В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
UlianaModerator
UlianaModerator
15.10.2020 09:18 •  Алгебра

Докажите равенство: 1-4sin^2x= 4sin(п\6-х)sin(п\6+х)

Показать ответ
Ответ:
shkiper15555
shkiper15555
29.05.2020 02:33

Преобразуем правую часть данного равенства.

4\sin{(\pi/6-x)}*\sin{(\pi/6+x)}=\\4*(\sin{\pi/6}*\cos{x}-\cos{\pi/6}*\sin{x})(\sin{\pi/6}*\cos{x}+\cos{\pi/6}*\sin{x})=\\4(\frac{\cos{x}-\sqrt{3}\sin{x}}{2} )(\frac{\cos{x}+\sqrt{3}\sin{x}}{2} )=\\(\cos{x}-\sqrt{3}\sin{x})(\cos{x}+\sqrt{3}\sin{x})=\\\cos^2{x}-3\sin^2{x}=\\1-\sin^2{x}-3\sin^2{x}=\\1-4\sin^2{x}

С начало я использовал дважды формулу "синус разности двух аргументов", затем вычислил табличные значения, упростил и использовал основное тригонометрическое тождество, и опять упростил.

Как видно получившиеся соответствует левой части равенства, значит равенство верное.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота