В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
vikarubachok
vikarubachok
10.09.2020 18:49 •  Алгебра

Доказать,что при любом нечетном а выражение a^4+7(2a^2+7) делится на 64

Показать ответ
Ответ:
Aynur123455
Aynur123455
14.07.2020 19:20
A^4+7(2a^2+7) = (a^2+7)^2
если а - нечетное, то а=2*b+1 где b - целое

a^2+7=(2*b+1)^2+7=4b^2+4b+8=4*(b^2+b+2)

если b - четное , то b^2 - четное, b^2+b+2 - четное, 4*(b^2+b+2) - делится на 8
если b - нечетное , то b^2 - нечетное, b^2+b+2 - четное, 4*(b^2+b+2) - делится на 8

4*(b^2+b+2) - делится на 8 при любых целых b

значит a^4+7(2a^2+7) =  (4*(b^2+b+2))^2  - делится на 64 при любых целых b
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота