1 степень: 3^1 = 3 - последняя цифра 3 2 степень: 3^2 = 3*3 =9 - последняя цифра 9 3 степень: 3^3 = 3*3*3 = 27 - последняя цифра 7 4 степень: 7*3 = 21 - последняя цифра 1 5 степень: 1*3 = 3 - последняя цифра 3 ...
вот так последние цифры и повторяются по кругу при каждом следующем умножении на 3 (увеличение степени). Период повторения, как легко видеть - 4. Получается что если взять показатель степени и взять остаток от деления на 4, то мы сразу увидим какая последняя цифра (см. первые 4 строки моего ответа).
Итак 3^17, берем остаток от деления на 4 числа 17. 17/4 = 4 и остаток 1. Значит последняя цифра будет как и у 3^1, то есть = 3.
Тут ещё проще - период повторения последней цифры = 2. То есть, если показатель степени чётный, то последняя цифра - 6, если нечётный, то последняя цифра - 4 (формально это всё тот же остаток от деления, только теперь на 2).
4^25. Показатель степени 25, нечётный, значит последняя цифра = 4
Теперь пример целиком: из того, что мы нашли раньше весь пример это прибавить к какому-то числу с последней цифрой = 3 (3^17) какое-то число с последней цифрой = 4 (4^25).
Сложение столбиком начинается с последних цифр, то есть 3+4. Другие цифры на последнюю цифру результата влияния не оказывают.
1) Производная функции f(x)=4x-sinx+1 равна f'(x) = 4 - cos(x). Значения функции и производной в заданной точке Хо = 0 равны: f(0) = 4*0 - 0 + 1 = 1 f'(x) = 4 - 1 = 3 Тогда уравнение касательной: Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна: f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2. Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе. Для этого находим критические точки: x^2 - 2x - 8 = 0 Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4; x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2. Поэтому ответ: f'(x) < 0 при -2 <x < 4.
2 степень: 3^2 = 3*3 =9 - последняя цифра 9
3 степень: 3^3 = 3*3*3 = 27 - последняя цифра 7
4 степень: 7*3 = 21 - последняя цифра 1
5 степень: 1*3 = 3 - последняя цифра 3
...
вот так последние цифры и повторяются по кругу при каждом следующем умножении на 3 (увеличение степени). Период повторения, как легко видеть - 4. Получается что если взять показатель степени и взять остаток от деления на 4, то мы сразу увидим какая последняя цифра (см. первые 4 строки моего ответа).
Итак 3^17, берем остаток от деления на 4 числа 17. 17/4 = 4 и остаток 1. Значит последняя цифра будет как и у 3^1, то есть = 3.
Теперь разберемся аналогично с четверкой.
4^1 = 4 (4)
4^2 = 16 (6)
4^3 = 64 (4)
4^4 = 256 (6)
Тут ещё проще - период повторения последней цифры = 2. То есть, если показатель степени чётный, то последняя цифра - 6, если нечётный, то последняя цифра - 4 (формально это всё тот же остаток от деления, только теперь на 2).
4^25. Показатель степени 25, нечётный, значит последняя цифра = 4
Теперь пример целиком: из того, что мы нашли раньше весь пример это прибавить к какому-то числу с последней цифрой = 3 (3^17) какое-то число с последней цифрой = 4 (4^25).
Сложение столбиком начинается с последних цифр, то есть 3+4. Другие цифры на последнюю цифру результата влияния не оказывают.
ответ: 3 + 4 = 7
Значения функции и производной в заданной точке Хо = 0 равны:
f(0) = 4*0 - 0 + 1 = 1
f'(x) = 4 - 1 = 3
Тогда уравнение касательной:
Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна:
f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2.
Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе.
Для этого находим критические точки:
x^2 - 2x - 8 = 0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4;
x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2.
Поэтому ответ: f'(x) < 0 при -2 <x < 4.