Объяснение:а) 2³ˣ⁺⁶ ≤ (1/4)ˣ⁻¹ , 2³ˣ⁺⁶ ≤ (2⁻²)ˣ⁻¹. 2³ˣ⁺⁶ ≤ 2²⁻²ˣ, основание показательной функции 2>1, значит функция у= 2ˣ -возрастающая, поэтому 3х+6≤2-2х ⇒ 5х≤-4 ⇒ х≤-4/5 ⇒ х≤ -0,8
б) (7/12)⁻²ˣ⁺³>(12/7)³⁺²ˣ ⇔ (12/7)²ˣ⁻³ >(12/7)³⁺²ˣ, основание показательной функции 12/7>1, значит функция у= (12/7)ˣ -возрастающая, поэтому 2х-3>3+2x 0x>6 нет реш, х=∅
в) 25⁻ˣ⁺³ ≥ (1/5)³ˣ⁻¹ ⇔(5²)⁻ˣ⁺³ ≥ (5⁻¹)³ˣ⁻¹ , 5⁻²ˣ⁺⁶ ≥ 5 ¹⁻³ˣ, основание показательной функции 5>1, значит функция у= 5ˣ -возрастающая, поэтому -2х+6≥1-3х ⇒ х≥-5, т.е. х∈[-5;+∞)
Объяснение:а) 2³ˣ⁺⁶ ≤ (1/4)ˣ⁻¹ , 2³ˣ⁺⁶ ≤ (2⁻²)ˣ⁻¹. 2³ˣ⁺⁶ ≤ 2²⁻²ˣ, основание показательной функции 2>1, значит функция у= 2ˣ -возрастающая, поэтому 3х+6≤2-2х ⇒ 5х≤-4 ⇒ х≤-4/5 ⇒ х≤ -0,8
б) (7/12)⁻²ˣ⁺³>(12/7)³⁺²ˣ ⇔ (12/7)²ˣ⁻³ >(12/7)³⁺²ˣ, основание показательной функции 12/7>1, значит функция у= (12/7)ˣ -возрастающая, поэтому 2х-3>3+2x 0x>6 нет реш, х=∅
в) 25⁻ˣ⁺³ ≥ (1/5)³ˣ⁻¹ ⇔(5²)⁻ˣ⁺³ ≥ (5⁻¹)³ˣ⁻¹ , 5⁻²ˣ⁺⁶ ≥ 5 ¹⁻³ˣ, основание показательной функции 5>1, значит функция у= 5ˣ -возрастающая, поэтому -2х+6≥1-3х ⇒ х≥-5, т.е. х∈[-5;+∞)
г)(5/3)²ˣ⁻⁸<(9/25)⁻ˣ⁺³ , (5/3)²ˣ⁻⁸< ((5/3)⁻²)⁻ˣ⁺³ (5/3)²ˣ⁻⁸< (5/3)²ˣ⁻⁶
основание (5/3)>1 , значит 2х-8<2x-6⇒ 0x<2? что невозможно,значит нет реш , х=∅
Объяснение:
1) Квадратичная функция имеет вид ах² + bx + c, поэтому подходит ответ под буквой а) y = 3x - x²
2) Нулями функции называются такие значения х, при которых значение функции (т. е. y) равно нулю
а) у = х² - 6х + 8 = 0
Решим квадратное уравнение через дискриминант.
x = 2
x = 4
Это и есть нули функции
б) y = 2x² + 6x
Вынесем общий множитель 2х
2х(х + 6) = 0
Произведение равно нулю, когда хотя бы один из множителей равен нулю.
2х = 0
х + 6 = 0
х = 0
х = -6
в) у = -2х² + 3х + 5 = 0
Домножим на -1, чтобы избавиться от минуса перед иксом
2х² - 3х - 5 = 0
Решаем через дискриминант:
x = 1
x = 5/2