1. Разложите на множители:
а) 4(3в-5)2-1 в) 2х2ур-15ур-3хр2+10ху2
б) а2-6ас+9с2-49 г) у2-16у+60
2. Разложите на множители:
а) 25(с+7)2-с2 в) 18х2р-10кху+20к2у-36кхр
б) 1-х2+2ху-у2 г) х2+10х-39
3. Разложите на множители:
а) 36у2-(у-х)2 в) 24а2-18ав+45вс-60ас
б) 100-а2+2ав-в2 г) у2+14у+48
4. Разложите на множители:
а) 4р2-(2р-5)2 в) 11х2+8с2-8сх-11хс
б) а2-к2-4а-4к г) х2-4х-12
5. Разложите на множители:
а) (7р+9)2-81 в) 5х3а+8у-10х2-4аух
б) в2-с2 -7в+7с г) х2+20у+64
6. Разложите на множители:
а) 4(2с+3)2-36 в) 3а2-12вк-3авк+12а
б) а2-к2-а-к г) х2-6х-16
с полным обьяснением и полной роспитью
Объяснение:
√81*0,25=√9*9*0,5*0,5=9*0,5=4,5.
√14,4*3,6=√ 14,4*10/10*3,6*10/10=√144*36*100/100=12*6/10=7,2.
√64*0,04=√8*8* 0,2*0,2=8*0,2=1,6.
√4/25=√2*2/5*5=2/5=0,4.
√7 1/9=√64/9=√8*8/3*3=8/3=2 2/3.
√1 11/25=√36/25=6/5=1 1/5.
√72*32=√8*9*8*2*2=8*3*2=48.
√0,64*9=0,8*3=2,4.
√4,9*12,1=√4,9*10*12,1*10/100=√7*7*11*11/100=7*11/10=7,7.
√3,6*250=√36*25=6*5=30.
√25/16=5/4=1 1/4=1.25.
√1 19/81=√100/81=10/9=1 1/9.
√3 6/25=√81/25=9/5=1 4/5=1,8.
√98*18=√2*7*7*2*3*3=2*7*3=42.
√9*36=3*6=18.
√0,49*25=0,7*5=3,5.
√100*0,64=10*0,8=8.
√4/9=2/3.
√81/100=9/10.
√169/225=13/15.
√810*40=√810/10*40*10=√81*400=9*20=180.
пример.рассмотрим следующую линейную функцию: y = 5x – 3.
1) d(y) = r;
2) e(y) = r;
3) функция общего вида;
4) непериодическая;
5) точки пересечения с осями координат:
ox: 5x – 3 = 0, x = 3/5, следовательно (3/5; 0) – точка пересечения с осью абсцисс.
oy: y = -3, следовательно (0; -3) – точка пересечения с осью ординат;
6) y = 5x – 3 – положительна при x из (3/5; +∞),
y = 5x – 3 – отрицательна при x из (-∞; 3/5);
7) y = 5x – 3 возрастает на всей области определения; линейной функцией называется функция вида y = kx + b, заданная на множестве всех действительных чисел. здесь k – угловой коэффициент (действительное число), b – свободный член (действительное число), x – независимая переменная.
в частном случае, если k = 0, получим постоянную функцию y = b, график которой есть прямая, параллельная оси ox, проходящая через точку с координатами (0; b).
если b = 0, то получим функцию y = kx, которая является прямой пропорциональностью.
смысл коэффициента b – длина отрезка, который отсекает прямая по оси oy, считая от начала координат.
смысл коэффициента k – угол наклона прямой к положительному направлению оси ox, считается против часовой стрелки.
свойства линейной функции:
1) область определения линейной функции есть вся вещественная ось;
2) если k ≠ 0, то область значений линейной функции есть вся вещественная ось. если k = 0, то область значений линейной функции состоит из числа b;
3) четность и нечетность линейной функции зависят от значений коэффициентов k и b.
a) b ≠ 0, k = 0, следовательно, y = b – четная;
b) b = 0, k ≠ 0, следовательно y = kx – нечетная;
c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида;
d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.
4) свойством периодичности линейная функция не обладает;
5) точки пересечения с осями координат:
ox: y = kx + b = 0, x = -b/k, следовательно (-b/k; 0) – точка пересечения с осью абсцисс.
oy: y = 0k + b = b, следовательно (0; b) – точка пересечения с осью ординат.
замечание.если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х. если b ≠ 0 и k = 0, то функция y = b не обращается в ноль ни при каких значениях переменной х.
6) промежутки знакопостоянства зависят от коэффициента k.
a) k > 0; kx + b > 0, kx > -b, x > -b/k.
y = kx + b – положительна при x из (-b/k; +∞),
y = kx + b – отрицательна при x из (-∞; -b/k).
b) k < 0; kx + b < 0, kx < -b, x < -b/k.
y = kx + b – положительна при x из (-∞; -b/k),
y = kx + b – отрицательна при x из (-b/k; +∞).
c) k = 0, b > 0; y = kx + b положительна на всей области определения,
k = 0, b < 0; y = kx + b отрицательна на всей области определения.
7) промежутки монотонности линейной функции зависят от коэффициента k.
k > 0, следовательно y = kx + b возрастает на всей области определения,
k < 0, следовательно y = kx + b убывает на всей области определения.
8) графиком линейной функции является прямая. для построения прямой достаточно знать две точки. положение прямой на координатной плоскости зависит от значений коэффициентов k и b.