В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Audika
Audika
13.05.2020 01:30 •  Алгебра

1) найдите точки экстремума функции: y=(3-2x)/(x+1) 2) найдите наибольшее и наименьшее значение функции на данном отрезке : y=2/(x^2+4) [-10; 10]

Показать ответ
Ответ:
iambigboy
iambigboy
09.10.2020 06:40

1) Точки экстремума - это точки, в которых производная = 0 или не существует.

Значит, надо искать производную. Сработает формула:

(U/V)' = (U'V - UV')/V²

Начнём.

y'= (-2(x+1) - (3-2x) )/(x+1)² = -5/(х+1)²

Эта производная не равна нулю. Но при х = -1 она не существует.

ответ: х = -1 это точка разрыва.

2)план наших действий:

ищем производную

приравниваем к нулю и решаем уравнение;

Смотрим, какие корни попали в указанный промежуток;

ищем значения функции в этих точках и на концах промежутка;

пишем ответ.

Поехали?

y'= -2/(х² +4)² * 2х= -4х/(х² +4)²

-4х/(х² +4)² = 0, ⇒ х = 0;  0∈[-10;10]

a) x = 0

y = 2/4 = 0,5

x = -10

y = 2/104

х = 10

у = 2/104

ответ: max y = 0,5

            min y = 2/104 = 1/52

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота