Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
Объяснение:
в 3 раза больше значит, чем w - значит 3*w
в первом w роз + 19 роз (добавили), во втором 3w + 17
если их стало поровну, то значит они равны
и получилось уравнение:
w+19=3w+7
-2w= -26
w= 13 роз в первом букете
3*13=39 роз во втором букете
ответ: 13 и 39
неизвестно, сколько деталей производит ученик, но мастер производит в 4 раза больше
неизвестное обозначаем как x
следовательно, ученик - x деталей, мастер 4х деталей
а вместе изготовили они 300 деталей
x+4x=300
5x=300
x=60 деталей изготовил ученик
4x=4*60=240 деталей изготовил мастер
ответ: 60 и 240
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет:
Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой
Перестановки с повторением.
Всего у нас
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность: