Войти
Регистрация
Спроси ai-bota
В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Показать больше
Показать меньше
Shariknt
23.10.2021 18:55 •
Алгебра
№1 1. определи, при каких значениях параметра корень уравнения равен 0. ax+5=7x+4a корень уравнения равен 0, если a= 2. при каких значениях параметра у данного уравнения нет корней? у уравнения нет корней, если a=
Показать ответ
Ответ:
Koroleva12112002
23.11.2022 03:59
Так как косинус четная функция, то
cos(π/2-3x)= cos (3x-π/2)
Решаем уравнение:
cos ( 3x-π/2) = √3/2
3x - π/2 = ± arccos (√3/2) + 2π·n, n∈ Z
3x - π/2 = ± (π/6) + 2π·n, n∈ Z
3x = π/2 ± (π/6) + 2π·n, n∈ Z
x = π/6 ± (π/12) + (2π/3)·n, n∈ Z
или
вычитая получим: складывая получим:
х₁= π/2 - (π/6) + (2π/3)·n, n∈ Z х₂= π/2 + (π/6) + (2π/3)·n, n∈ Z
х₁= π/3 + (2π/3)·n, n∈ Z х₂=2π/3 + (2π/3)·n, n∈ Z
при n =0 получаем корни
π/3 и 2π/3
при n = 1
(π/3) + (2π\3) = π и (2π/3) + (2π/3)= 4π/3
при n = 2
(π/3) + (2π/3)·2=(5π\3) и ( 2π/3) +(2π/3)·2=(6π\3)=2π
3π/2 <(5π/3) <2π
3π/2 < 2π≤2π
ответ. На [3π/2; 2π] два корня: (5π.3) и 2π
0,0
(0 оценок)
Ответ:
3AKBACKA
25.05.2021 23:25
0,2х + 0,2х²·(8х - 3) = 0,4х²·(4х - 5)
0,2x·(1 + 0,2x·(8x - 3)) = 0,4x²·(4x - 5)
0,2x·(1 + 0,2x·(8x - 3)) - 0,4x²·(4x - 5) = 0
0,2x·(1 + 1,6x² - 0,6x) - 0,2x·2x·(4x - 5)=0
0,2x·(1 + 1,6x² - 0,6x - 8x² + 10x) = 0
0,2x·(1 + 1,6x² - 0,6x - 8x² + 10x) = 0
0,2x·(1 - 6,4x² + 9,4x) = 0
x=0 или 6,4х² - 9,4х - 1 = 0
64х² - 94 х - 10 = 0
D=94²+4·64·10=8836+2560=11396
x=(94-√11396)/128 >0 или х=(94+√11396)/128 >0
x=0 - меньший корень уравнения
0,0
(0 оценок)
Популярные вопросы: Алгебра
SashaSvey
13.02.2022 12:32
Прямая проходит через точки a(2; 3) и b(– 4; – 1), пересекает ось oy в точке c. найти координаты точки c....
ВалеріяГалущинська
01.01.2021 17:28
5.10.найдите значение выражения: 1) 11 + 62 – 11 – 62 — 2 /2; 2) 9 + 4 2 – 9 – 4 2 + 2,5; 3) 2 (19 – 8 3 – з 19 + 8 3 – 2; 4) 7+43 + v7-43 - + 2/27 . 45 !...
ilchumakovsky1
02.11.2021 00:53
Решить уравнение корень x -5 равно -9...
erke22
24.09.2020 08:25
10. найдите неопределенный интеграл: 1) j(3х – 2)? dx; 2) j (2-х)* -17 х 9 + 2 dx; -17 х93) f(sin5x - 2(4x-1)° )dx; 4) i sin s go ax....
Давид1111david
23.05.2021 18:01
При каких значениях х имеет смысл выражение корень 6х +2...
dias1101
05.01.2021 15:02
A) имеется 20 прямоугольников, ромбов и квадратов. из них 14 являются ромбами, 9- прямоугольниками. сколько всего квадратов b) из 30 чисел, которые больше 10, 20 чисел...
Sgff3
29.03.2022 01:59
20.1Решите системы неравенств(20.1-205): только 1 по ...
vladagabriell
24.01.2022 07:42
Скільки розв язків може мати рівняння ах²=0 ?...
мирали3
22.10.2022 02:44
Привести подобный слагаемые 3а³-а³+а²-6а³+4а²...
Хелп11111111111
19.02.2023 17:10
1. График функции y(x) – ломаная ABCDEF, где А(-6;3), B(-3;3), C(-1;6), D(0;3), E(4:3), F(6;-3).1) Построить этот график.2) Используя график функции, найти y(x)приx =...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
cos(π/2-3x)= cos (3x-π/2)
Решаем уравнение:
cos ( 3x-π/2) = √3/2
3x - π/2 = ± arccos (√3/2) + 2π·n, n∈ Z
3x - π/2 = ± (π/6) + 2π·n, n∈ Z
3x = π/2 ± (π/6) + 2π·n, n∈ Z
x = π/6 ± (π/12) + (2π/3)·n, n∈ Z
или
вычитая получим: складывая получим:
х₁= π/2 - (π/6) + (2π/3)·n, n∈ Z х₂= π/2 + (π/6) + (2π/3)·n, n∈ Z
х₁= π/3 + (2π/3)·n, n∈ Z х₂=2π/3 + (2π/3)·n, n∈ Z
при n =0 получаем корни
π/3 и 2π/3
при n = 1
(π/3) + (2π\3) = π и (2π/3) + (2π/3)= 4π/3
при n = 2
(π/3) + (2π/3)·2=(5π\3) и ( 2π/3) +(2π/3)·2=(6π\3)=2π
3π/2 <(5π/3) <2π
3π/2 < 2π≤2π
ответ. На [3π/2; 2π] два корня: (5π.3) и 2π
0,2x·(1 + 0,2x·(8x - 3)) = 0,4x²·(4x - 5)
0,2x·(1 + 0,2x·(8x - 3)) - 0,4x²·(4x - 5) = 0
0,2x·(1 + 1,6x² - 0,6x) - 0,2x·2x·(4x - 5)=0
0,2x·(1 + 1,6x² - 0,6x - 8x² + 10x) = 0
0,2x·(1 + 1,6x² - 0,6x - 8x² + 10x) = 0
0,2x·(1 - 6,4x² + 9,4x) = 0
x=0 или 6,4х² - 9,4х - 1 = 0
64х² - 94 х - 10 = 0
D=94²+4·64·10=8836+2560=11396
x=(94-√11396)/128 >0 или х=(94+√11396)/128 >0
x=0 - меньший корень уравнения