площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
s = 1 a · h
2
формула площади треугольника по трем сторонам
формула герона
s = √p(p - a)(p - b)(p - c)
формула площади треугольника по двум сторонам и углу между ними
площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.
s = 1 a · b · sin γ
2
формула площади треугольника по трем сторонам и радиусу описанной окружности
s = a · b · с
4r
формула площади треугольника по трем сторонам и радиусу вписанной окружности
площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
s = p · r
где s - площадь треугольника,
a, b, c - длины сторон треугольника,
h - высота треугольника,
γ - угол между сторонами a и b,
r - радиус вписанной окружности,
r - радиус описанной окружности,
p = a + b + c - полупериметр треугольника.
2
формулы площади квадрата
квадрат
формула площади квадрата по длине стороны
площадь квадрата равна квадрату длины его стороны.
s = a2
формула площади квадрата по длине диагонали
площадь квадрата равна половине квадрата длины его диагонали.
s = 1 d2
2
где s - площадь квадрата,
a - длина стороны квадрата,
d - длина диагонали квадрата.
формула площади прямоугольника
прямоугольник
площадь прямоугольника равна произведению длин двух его смежных сторон
s = a · b
где s - площадь прямоугольника,
a, b - длины сторон прямоугольника.
вы можете воспользоваться онлайн калькулятором для расчета площади прямоугольника.
формулы площади параллелограмма
параллелограмм
формула площади параллелограмма по длине стороны и высоте
площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.
s = a · h
формула площади параллелограмма по двум сторонам и углу между ними
площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.
s = a · b · sin α
формула площади параллелограмма по двум диагоналям и углу между ними
площадь параллелограмма равна половине произведения длин его диагоналей умноженному на синус угла между ними.
s = 1 d1d2 sin γ
2
где s - площадь параллелограмма,
a, b - длины сторон параллелограмма,
h - длина высоты параллелограмма,
d1, d2 - длины диагоналей параллелограмма,
α - угол между сторонами параллелограмма,
γ - угол между диагоналями параллелограмма.
формулы площади ромба
ромб
формула площади ромба по длине стороны и высоте
площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.
s = a · h
формула площади ромба по длине стороны и углу
площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.
s = a2 · sin α
формула площади ромба по длинам его диагоналей
площадь ромба равна половине произведению длин его диагоналей.
s = 1 d1 · d2
2
где s - площадь ромба,
a - длина стороны ромба,
h - длина высоты ромба,
α - угол между сторонами ромба,
d1, d2 - длины диагоналей.
формулы площади трапеции
трапеция
формула герона для трапеции
s = a + b √(p-a)(p-b)(p-a-c)(p-a-d)
|a - b|
формула площади трапеции по длине основ и высоте
площадь трапеции равна произведению полусуммы ее оснований на высоту
s = 1 (a + b) · h
2
где s - площадь трапеции,
a, b - длины основ трапеции,
c, d - длины боковых сторон трапеции,
p = a + b + c + d - полупериметр трапеции.
2
формулы площади выпуклого четырехугольника
выпуклый четырехугольник
формула площади четырехугольника по длине диагоналей и углу между ними площадь выпуклого четырехугольника равна половине произведения его диагоналей умноженному на синус угла между ними:
s = 1 d1 d2 sin α
2
где s - площадь четырехугольника,
d1, d2 - длины диагоналей четырехугольника,
α - угол между диагоналями четырехугольника.
формула площади описанного четырехугольника (по длине периметра и радиусу вписанной окружности)
площадь выпуклого четырехугольника равна произведению полупериметра на радиус вписанной окружности
s = p · r
выпуклый четырехугольник
формула площади четырехугольника по длине сторон и значению противоположных углов
s = √(p - a)(p - b)(p - c)(p - d) - abcd cos2θ
где s - площадь четырехугольника,
a, b, c, d - длины сторон четырехугольника,
p = a + b + c + d 2 - полупериметр четырехугольника,
Мақалада тарихи деректердің негізінде IV-V ғасырлардағы Византия империясы мен ғұндардың қарым-қатынасы қарастырылады. Қазіргі таңда дүниежүзі тарихында Түркі тайпаларының соның ішінде қарастырылып отырған мәселеміз - Ғұн державасының тарихи маңызы өте зор. Халықтардың Ұлы қоныс аудару кезеңінде ғұндар Орталық Азия жерінен Батыс Еуропа жеріне Шығыс мәдениетінің элементтерін алып келді. Бұл отан тарихында ең өзекті мәселелердің бірі болып табылады. Түйін сөздер; Византия, ғұндар, тарихи дерек, империя, диадема, тайпа, өркениет.
формулы площади треугольника
треугольник
формула площади треугольника по стороне и высоте
площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
s = 1 a · h
2
формула площади треугольника по трем сторонам
формула герона
s = √p(p - a)(p - b)(p - c)
формула площади треугольника по двум сторонам и углу между ними
площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.
s = 1 a · b · sin γ
2
формула площади треугольника по трем сторонам и радиусу описанной окружности
s = a · b · с
4r
формула площади треугольника по трем сторонам и радиусу вписанной окружности
площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
s = p · r
где s - площадь треугольника,
a, b, c - длины сторон треугольника,
h - высота треугольника,
γ - угол между сторонами a и b,
r - радиус вписанной окружности,
r - радиус описанной окружности,
p = a + b + c - полупериметр треугольника.
2
формулы площади квадрата
квадрат
формула площади квадрата по длине стороны
площадь квадрата равна квадрату длины его стороны.
s = a2
формула площади квадрата по длине диагонали
площадь квадрата равна половине квадрата длины его диагонали.
s = 1 d2
2
где s - площадь квадрата,
a - длина стороны квадрата,
d - длина диагонали квадрата.
формула площади прямоугольника
прямоугольник
площадь прямоугольника равна произведению длин двух его смежных сторон
s = a · b
где s - площадь прямоугольника,
a, b - длины сторон прямоугольника.
вы можете воспользоваться онлайн калькулятором для расчета площади прямоугольника.
формулы площади параллелограмма
параллелограмм
формула площади параллелограмма по длине стороны и высоте
площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.
s = a · h
формула площади параллелограмма по двум сторонам и углу между ними
площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.
s = a · b · sin α
формула площади параллелограмма по двум диагоналям и углу между ними
площадь параллелограмма равна половине произведения длин его диагоналей умноженному на синус угла между ними.
s = 1 d1d2 sin γ
2
где s - площадь параллелограмма,
a, b - длины сторон параллелограмма,
h - длина высоты параллелограмма,
d1, d2 - длины диагоналей параллелограмма,
α - угол между сторонами параллелограмма,
γ - угол между диагоналями параллелограмма.
формулы площади ромба
ромб
формула площади ромба по длине стороны и высоте
площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.
s = a · h
формула площади ромба по длине стороны и углу
площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.
s = a2 · sin α
формула площади ромба по длинам его диагоналей
площадь ромба равна половине произведению длин его диагоналей.
s = 1 d1 · d2
2
где s - площадь ромба,
a - длина стороны ромба,
h - длина высоты ромба,
α - угол между сторонами ромба,
d1, d2 - длины диагоналей.
формулы площади трапеции
трапеция
формула герона для трапеции
s = a + b √(p-a)(p-b)(p-a-c)(p-a-d)
|a - b|
формула площади трапеции по длине основ и высоте
площадь трапеции равна произведению полусуммы ее оснований на высоту
s = 1 (a + b) · h
2
где s - площадь трапеции,
a, b - длины основ трапеции,
c, d - длины боковых сторон трапеции,
p = a + b + c + d - полупериметр трапеции.
2
формулы площади выпуклого четырехугольника
выпуклый четырехугольник
формула площади четырехугольника по длине диагоналей и углу между ними площадь выпуклого четырехугольника равна половине произведения его диагоналей умноженному на синус угла между ними:
s = 1 d1 d2 sin α
2
где s - площадь четырехугольника,
d1, d2 - длины диагоналей четырехугольника,
α - угол между диагоналями четырехугольника.
формула площади описанного четырехугольника (по длине периметра и радиусу вписанной окружности)
площадь выпуклого четырехугольника равна произведению полупериметра на радиус вписанной окружности
s = p · r
выпуклый четырехугольник
формула площади четырехугольника по длине сторон и значению противоположных углов
s = √(p - a)(p - b)(p - c)(p - d) - abcd cos2θ
где s - площадь четырехугольника,
a, b, c, d - длины сторон четырехугольника,
p = a + b + c + d 2 - полупериметр четырехугольника,
θ = α + β 2 - полусумма двух противоположных углов четырехугольника.
формула площади четырехугольника, вокруг которого можно описать окружность
s = √(p - a)(p - b)(p - c)(p - d)
формулы площади круга
круг
формула площади круга через радиус
площадь круга равна произведению квадрата радиуса на число пи.
s = π r2
формула площади круга через диаметр
площадь круга равна четверти произведения квадрата диаметра на число пи.
s = 1 π d2
4
где s - площадь круга,
r - длина радиуса круга,
d - длина диаметра круга.
Мақалада тарихи деректердің негізінде IV-V ғасырлардағы Византия империясы мен ғұндардың қарым-қатынасы қарастырылады. Қазіргі таңда дүниежүзі тарихында Түркі тайпаларының соның ішінде қарастырылып отырған мәселеміз - Ғұн державасының тарихи маңызы өте зор. Халықтардың Ұлы қоныс аудару кезеңінде ғұндар Орталық Азия жерінен Батыс Еуропа жеріне Шығыс мәдениетінің элементтерін алып келді. Бұл отан тарихында ең өзекті мәселелердің бірі болып табылады. Түйін сөздер; Византия, ғұндар, тарихи дерек, империя, диадема, тайпа, өркениет.