1)y1=х+9 и y2=-x+6 Первый просто построить графики и проверить пересечение. Второй найти точку пересечения. Для этого приравниваем функции, чтобы найти абсциссу точки пересечения: х+9=-х+6; 2х=-3; х=-1,5 Отсюда находим ординату: х+9=-х+6; -1,5+9=1,5+6 7,5=7,5 у1=у2=7,5 Координаты точки пересечения: (-1,5;7,5) Третий Любые две прямые, содержащиеся в одной плоскости, пересекаются, если только они не являются параллельными. Прямые являются параллельными, если k при х у них одинаковый. Рассмотрим k при х: y1=x+9; k при х =1 у2=-х+6; k при х = -1 1≠-1, ⇒ прямые не параллельны; прямые содержатся в одной плоскости⇒они пересекаются.
2) y = -0,5x + 13 и y = 8 + x То же самое. Выбирайте любой из трёх построить график, найти координаты точки пересечения либо доказать аналитически через сравнение коэффициентов при х. Давайте воспользуемся третьим например (сравнение коэффициентов): y1 = -0,5x1 + 13, k(x1) = -0,5 y2 = 8 + x2, k(x2) = 1 -0,5 ≠ 1 k(x1) ≠ k(x2) ⇒ прямые пересекаются.
Первый
просто построить графики и проверить пересечение.
Второй
найти точку пересечения.
Для этого приравниваем функции, чтобы найти абсциссу точки пересечения:
х+9=-х+6;
2х=-3;
х=-1,5
Отсюда находим ординату:
х+9=-х+6;
-1,5+9=1,5+6
7,5=7,5
у1=у2=7,5
Координаты точки пересечения: (-1,5;7,5)
Третий
Любые две прямые, содержащиеся в одной плоскости, пересекаются, если только они не являются параллельными. Прямые являются параллельными, если k при х у них одинаковый. Рассмотрим k при х:
y1=x+9; k при х =1
у2=-х+6; k при х = -1
1≠-1, ⇒ прямые не параллельны; прямые содержатся в одной плоскости⇒они пересекаются.
2) y = -0,5x + 13 и y = 8 + x
То же самое. Выбирайте любой из трёх построить график, найти координаты точки пересечения либо доказать аналитически через сравнение коэффициентов при х. Давайте воспользуемся третьим например (сравнение коэффициентов):
y1 = -0,5x1 + 13, k(x1) = -0,5
y2 = 8 + x2, k(x2) = 1
-0,5 ≠ 1
k(x1) ≠ k(x2) ⇒ прямые пересекаются.
По условию задачи имеем : (1200 * (100 + х) / 100 ) * (100 + х) / 100 = 1452
(1200 * (100 + х) / 100 ) * (100 + х) = 1452 * 100
(1200 * (100 + х) /100) * (100 + х) = 145200
(1200 * (100 + х) * (100 + х))/100 = 145200
12 * (100 + х)^2 = 145200
12 * (10000 + 200х + х^2) = 145200
x^2 + 200x + 10000 = 12100
x^2 + 200x + 10000 - 12100 = 0
x^2 + 200x - 2100 = 0
Дискриминант квадратного уравнения D равен : 200^2 - 4 * 1 * (-2100) =
40000 + 8400 = 48400 . Корень квадратный из дискриминанта равен : 220 . Корни уравнения равны : 1 - ый = (- 200 + 220) /2 * 1 = 20 / 2 = 10 ;
2 -ой = (- 200 - 220) / 2 * 1 = - 420 / 2 = - 210 . Второй корень нам не подходит , так как было увеличение выпуска . Значит на заводе в течение года два раза было увеличение выпуска продукции на 10 % .