валгина решили оформить дорожки тротуарной плиткой тротуарная плитка продается в упаковках по 40 штуклогин решили оформить дорожки тротуарной плитка тротуарная плитка продается в упаковках по 40 штук рассчитать количество упаковок при для совершения работы Запишите решение ответ ответ округлите до целого числа
ответ:
пошаговое объяснение:
1). iv - ; xii - 22; xix - 19; xxxiit - это не римская цифра (т-? ); xli - 41; xcv - 95; lxxvii - 77
2). 3 -iii; 7 - vii; 12 -xii; 14 - xiv; 25 - xxv; 37 - xxxvii; 42 - xlii; 53 - liii; 66 - lxvi; 89 - lxxxix; 105 - cv; 110 - cx; 151 - cli
200 - cc; 239 - ccxxxix; 318 - ; 402 - cdii; 515 - dxv; 1200 - mcc; 2563 - mmdlxiii; 3022 - mmmxx
3). xi + v = xvi
xx - ii = xliii
il tv - это не римская цифра (т-? );
cci + iii = cciv
xxxv 4 ix (арабскую цифру 4 переведем в римскую iv):
xxxv iv ix = mcclx
ci vii = dccvii
ответ:
обоснование числовой лотереи рассчитывается с применением теории вероятностей и теории чисел. рассчитав вероятное число выигрышей каждого класса, можно узнать, какой процент от общей суммы доходов должен пойти на выигрыши каждого класса и какова должна быть сумма каждого выигрыша.
общее количество комбинаций в числовой лотерее рассчитывается при формулы: “а номеров из n” = (n)
(a) = n x (n - 1) x (n - 2) x (n - 3) … x [n - (a -1)]
1 x 2 x 3 x 4 x a
в числовой лотерее “6 из 49” общее количество комбинаций составляет: “6 из 49” = (49)
(6) = 49 x 48 x 47 x 46 x 45 x 44
1 x 2 x 3 x 4 x 5 x 6 = 13 983 816 комбинаций
вероятное число выигрышей каждого класса определяется с учетом коэффициента вероятности каждого выигрыша следующим образом:
выигрыши 1 класса (за 6 угаданных номеров) :
(6)
(6) х (43)
( 0 ) = 6 х 5 х 4 х 3 х 2 х 1
1 х 2 х 3 х 4 х 5 х 6 = 1 выигрыш
выигрыши 2 класса (за 5 угаданных номеров) :
(6)
(5) х (43)
( 1 ) = 6 х 5 х 4 х 3 х 2
1 х 2 х 3 х 4 х 5 x 43
1 = 258 выигрышей
выигрыши 3 класса (за 4 угаданных номера) :
(6)
(4) х (43)
( 2 ) = 6 х 5 х 4 х 3
1 х 2 х 3 х 4 x 43 х 42
1 х 2 = 27 090 выигрышей
всего в лотерее “6 из 49”, таким образом, содержится 27 349 выигрышей, т. е. 1 выигрыш приходится на 511 комбинаций.
вероятность появления выигрыша каждого класса определяется отношением вероятного числа выигрышей к общему числу случаев выигрышей, равному общему количеству комбинаций в лотерее:
выигрыш 1 класса (за 6 угаданных номеров) :
= 13 983 816
1 = 1 на 13 983 816 комбинаций
выигрыш 2 класса (за 5 угаданных номеров) :
= 13 983 816
258 = 1 на 54 200 комбинаций
выигрыш 3 класса (за 4 угаданных номера) :
= 13 983 816
27 090 = 1 на 516 комбинаций
пошаговое объяснение: