Вообще это теорема Рассмотрим какие-нибудь две диагонали куба, например А1А3' и А4А'2. Так как четырехугольники А1А2А3А4 и А2А'2А'3А3 — квадраты с общей стороной А2А3, то их стороны А1А4 и A'2A'3 параллельны друг другу, а значит, лежат в одной плоскости. Эта плоскость пересекает плоскости противолежащих граней куба по параллельным прямым А1А'2 и А 4А' 3. Следовательно, четырехугольник А4А 1A'2A'3 — параллелограмм. Диагонали куба А1А3' и А4А'2 являются диагоналями этого параллелограмма. Поэтому они пересекаются и точкой пересечения О делятся пополам.Аналогично доказывается, что диагонали А1А3' и А2А4' , а также диагонали А1А3' и А3А1' пересекаются и точкой пересечения делятся пополам. Отсюда заключаем, что все четыре диагонали куба пересекаются в одной точке и точкой пересечения делятся пополам. Доказано.
Правильная треугольная пирамида - это тетраэдр. AB = AC = BC = AS = BS = CS = 2 OF = 1/4*OS Центр основания пирамиды О - это центр равностороннего тр-ка АВС. CM - медиана, она же биссектриса и высота тр-ка АВС. AM = AB/2 = 1, CM = √(AC^2 - AM^2) = √(2^2 - 1^2) = √(4 - 1) = √3 MO = 1/3*CM = √3/3; OA = OC = 2/3*CM = 2√3/3 OS = √(CS^2 - OC^2) = √(4 - 4*3/9) = √((36-12)/9) = √24/3 = 2√6/3 OF = 1/4*OS = 2√6/12 = √6/6 И наконец находим угол между плоскостью MBF = ABF и ABC. tg(OMF) = OF/MO = (√6/6) / (√3/3) = √6/6 * 3/√3 = √6/(2√3) = √2/2 OMF = arctg (√2/2)
Рассмотрим какие-нибудь две диагонали куба, например А1А3' и А4А'2. Так как четырехугольники А1А2А3А4 и А2А'2А'3А3 — квадраты с общей стороной А2А3, то их стороны А1А4 и A'2A'3 параллельны друг другу, а значит, лежат в одной плоскости. Эта плоскость пересекает плоскости противолежащих граней куба по параллельным прямым А1А'2 и А 4А' 3. Следовательно, четырехугольник А4А 1A'2A'3 — параллелограмм. Диагонали куба А1А3' и А4А'2 являются диагоналями этого параллелограмма. Поэтому они пересекаются и точкой пересечения О делятся пополам.Аналогично доказывается, что диагонали А1А3' и А2А4' , а также диагонали А1А3' и А3А1' пересекаются и точкой пересечения делятся пополам. Отсюда заключаем, что все четыре диагонали куба пересекаются в одной точке и точкой пересечения делятся пополам. Доказано.
AB = AC = BC = AS = BS = CS = 2
OF = 1/4*OS
Центр основания пирамиды О - это центр равностороннего тр-ка АВС.
CM - медиана, она же биссектриса и высота тр-ка АВС.
AM = AB/2 = 1, CM = √(AC^2 - AM^2) = √(2^2 - 1^2) = √(4 - 1) = √3
MO = 1/3*CM = √3/3; OA = OC = 2/3*CM = 2√3/3
OS = √(CS^2 - OC^2) = √(4 - 4*3/9) = √((36-12)/9) = √24/3 = 2√6/3
OF = 1/4*OS = 2√6/12 = √6/6
И наконец находим угол между плоскостью MBF = ABF и ABC.
tg(OMF) = OF/MO = (√6/6) / (√3/3) = √6/6 * 3/√3 = √6/(2√3) = √2/2
OMF = arctg (√2/2)