Пусть х км/ч - собственная скорость катера. Тогда скорость катера по течению - (х+2) км/ч, против течения (х-2) км/ч. Катер был в пути 19 ч-15ч = 4 ч. Из них 2 ч стоял, т. е. катер плыл 4-2=2 ч. Против течения катер плыл 7/(х-2) часов, по течению плыл 27/(х+2) ч. Составляем уравнение: 7/(х-2) + 27/(х+2) = 2 7*(х+2) + 27(х-2) = 2 (х+2)*(х-2) 7х+14+27х-54=2х(квадрат)-8 34х-40-2хквадрат+ 8 =0 2хквадрат -34х + 32=0 хквадрат - 17х + 16 =0 D=17*17-4*16=289-64=225 х1=(17-15)/2 = 1 (км/ч) - не может быть решением данной задачи, т. к. 1 км/ч меньше 2 км/ч, а скорость катера не может быть меньше скорости течения.
1) проведём высоты nh и ks. ⇒ угол mhn=90° и угол ksp=90°⇒треугольники mhn и pks - прямоугольные. 2) mh/mn=sin45° mh/8=корень из 2/2 mh=4 корней из 2 3)sp/kp=sin30° sp/10=1/2 sp=5 4) hnks - прямоугольник, т.к hnks является параллелограммом (nk параллельно hs, т.к основания трапеции параллельны и nh параллельно ks по соответственно равным ∠ 90° = nhm и ksm), у которого все ∠ равны по 90° значит nk=hp=5 см отсюда mp=mh+hs+sp= 4√2 + 5 + 5 = 10 + 4√2 (см) 5) средняя линия bd = (nk + mp)/2= (5 + 10 + 4√2)/2 = 7,5 + 2 √2 ответ: 7,5 + 2√ 2
Против течения катер плыл 7/(х-2) часов, по течению плыл 27/(х+2) ч.
Составляем уравнение:
7/(х-2) + 27/(х+2) = 2
7*(х+2) + 27(х-2) = 2 (х+2)*(х-2)
7х+14+27х-54=2х(квадрат)-8
34х-40-2хквадрат+ 8 =0
2хквадрат -34х + 32=0
хквадрат - 17х + 16 =0
D=17*17-4*16=289-64=225
х1=(17-15)/2 = 1 (км/ч) - не может быть решением данной задачи, т. к. 1 км/ч меньше 2 км/ч, а скорость катера не может быть меньше скорости течения.
х2 = (17+15)/2 = 16 км/ч
ответ. Собственная скорость катера 16 км/ч