Данная задачи имеет два решения, так как возможны два случая: - А, первый автомобиль НЕ ДОГНАЛ второй, между ними расстояние еще 10км; - В. Первый автомобиль ПЕРЕГНАЛ второй и расстояние между ними 10км. Решение. А. --70> |35 км|_10км__| --60> 1). 45-10 = 35 (км) расстояние, которое нужно преодолеть первому автомобилю, чтобы подойти на ко второму на расстояние 10 км от него; 2). 70 - 60 = 10(км/час) скорость сближения; 3). 35/10 = 3,5 (час) время, за которое первый автомобиль ПОДОЙДЕТ КО второму на расстояние 10 км от него Проверка: 70*3,5 - 60*3,5 = 45-10; 35=35
В --60> |45км|_10км__|--70> 1). 45+10 = 55(км) расстояние, которое нужно преодолеть первому автомобилю, чтобы удалиться от второго на 10км; 2). 55 : 10 = 5,5 час время, за которое первый автомобиль перегонит второй на 10 км. Проверка: 70*5,5 -60*5,5 = 45+10; 55=55
ответ: Через 3,5 час первый автомобиль будет на расстоянии 10 км от второго, затем догонит его, начнет удаляться и через 5,5 часа от начала движения опять будет на расстоянии 10 км
1) Взаимно простые числа - такие, что не имеют общих делителей, кроме 1. Для них НОК - просто произведение:
3, 4: НОК(3, 4) = 12
3, 7: НОК(3, 7) = 21
3, 8: НОК(3, 8) = 24
4, 7: НОК(4, 7) = 28
4, 9: НОК(4, 9) = 36
6, 7: НОК(6, 7) = 42
7, 8: НОК(7, 8) = 56
7, 9: НОК(7, 9) = 63
8, 9: НОК(8, 9) = 72
2) Эти числа должны иметь вид x, n*x. Максимальное число, на которое делится каждое из них, равно x, а минимальное число, которое делится на каждое из них равно n*x.
3, 6: НОД(3, 6) = 3; НОК(3, 6) = 6
3, 9: НОД(3, 9) = 3; НОК(3, 9) = 9
4, 8: НОД(4, 8) = 4; НОК(4, 8) = 8
3) Сюда подойдут все пары, выписанные в пункте 2. Остальные пары:
4, 6: НОД(4, 6) = 2; НОК(4, 6) = 12
6, 8: НОД(6, 8) = 2; НОК(6, 8) = 24
6, 9: НОД(6, 9) = 3; НОК(6, 9) = 18
Пример вычисления для НОД и НОК пары 6 и 9:
Раскладываем на простые множители: 6 = 2 * 3, 9 = 3 * 3НОД - произведение всех простых множителей, входящих одновременно в оба разложения. НОД(6, 9) = 3НОК - произведение всех простых множителей, входящих хотя бы в одно разложение. НОК(6, 9) = 2 * 3 * 3 = 18.
Для упрощения жизни можно заметить, что для пары чисел x и y верно равенство: НОД(x, y) * НОК(x, y) = xy. Тогда, например, вычислив, что НОД(6, 9) = 3, сразу находим, что НОК(6, 9) = 6 * 9 / НОД(6, 9) = 54 / 3 = 18
- А, первый автомобиль НЕ ДОГНАЛ второй, между ними расстояние еще 10км;
- В. Первый автомобиль ПЕРЕГНАЛ второй и расстояние между ними 10км.
Решение.
А.
--70>
|35 км|_10км__| --60>
1). 45-10 = 35 (км) расстояние, которое нужно преодолеть первому автомобилю, чтобы подойти на ко второму на расстояние 10 км от него;
2). 70 - 60 = 10(км/час) скорость сближения;
3). 35/10 = 3,5 (час) время, за которое первый автомобиль ПОДОЙДЕТ КО второму на расстояние 10 км от него
Проверка: 70*3,5 - 60*3,5 = 45-10; 35=35
В --60>
|45км|_10км__|--70>
1). 45+10 = 55(км) расстояние, которое нужно преодолеть первому автомобилю, чтобы удалиться от второго на 10км;
2). 55 : 10 = 5,5 час время, за которое первый автомобиль перегонит второй на 10 км.
Проверка: 70*5,5 -60*5,5 = 45+10; 55=55
ответ: Через 3,5 час первый автомобиль будет на расстоянии 10 км от второго, затем догонит его, начнет удаляться и через 5,5 часа от начала движения опять будет на расстоянии 10 км
1) Взаимно простые числа - такие, что не имеют общих делителей, кроме 1. Для них НОК - просто произведение:
3, 4: НОК(3, 4) = 12
3, 7: НОК(3, 7) = 21
3, 8: НОК(3, 8) = 24
4, 7: НОК(4, 7) = 28
4, 9: НОК(4, 9) = 36
6, 7: НОК(6, 7) = 42
7, 8: НОК(7, 8) = 56
7, 9: НОК(7, 9) = 63
8, 9: НОК(8, 9) = 72
2) Эти числа должны иметь вид x, n*x. Максимальное число, на которое делится каждое из них, равно x, а минимальное число, которое делится на каждое из них равно n*x.
3, 6: НОД(3, 6) = 3; НОК(3, 6) = 6
3, 9: НОД(3, 9) = 3; НОК(3, 9) = 9
4, 8: НОД(4, 8) = 4; НОК(4, 8) = 8
3) Сюда подойдут все пары, выписанные в пункте 2. Остальные пары:
4, 6: НОД(4, 6) = 2; НОК(4, 6) = 12
6, 8: НОД(6, 8) = 2; НОК(6, 8) = 24
6, 9: НОД(6, 9) = 3; НОК(6, 9) = 18
Пример вычисления для НОД и НОК пары 6 и 9:
Раскладываем на простые множители: 6 = 2 * 3, 9 = 3 * 3НОД - произведение всех простых множителей, входящих одновременно в оба разложения. НОД(6, 9) = 3НОК - произведение всех простых множителей, входящих хотя бы в одно разложение. НОК(6, 9) = 2 * 3 * 3 = 18.Для упрощения жизни можно заметить, что для пары чисел x и y верно равенство: НОД(x, y) * НОК(x, y) = xy. Тогда, например, вычислив, что НОД(6, 9) = 3, сразу находим, что НОК(6, 9) = 6 * 9 / НОД(6, 9) = 54 / 3 = 18