В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
jansayabektasova
jansayabektasova
20.10.2021 05:39 •  Математика

с математикой! Вычислить площадь фигуры, ограниченной графиками функций y1=f1(x) и y2=f2(x). По примеру!

y=4-x^2, y=x^2-2x


с математикой! Вычислить площадь фигуры, ограниченной графиками функций y1=f1(x) и y2=f2(x). По прим

Показать ответ
Ответ:
pczheka1
pczheka1
26.05.2021 03:48
Чтобы число не делилось на пять, оно не должно оканчиваться на 0 или 5. Соответственно, мы должны выбрать все числа, соответствующие последние цифры которых, скомбинированные попарно, не дадут в сумме 10 или 5, то есть:
Все числа, оканчивающиесь на 1, плюс все, оканчивающиеся на 2, плюс все оканчивающиеся на 6 и все оканчивающиеся на 7, плюс одно число, оканчивающееся на 5. 
Или: все на 1, на 3, на 6, на 8
Или: на 2, на 3, на 6, на 9
Всего таких комбинаций 10, и любая из них охватывает 40% от общего количества чисел в диапазоне.
Таким образом, 2000-1100=900; 900*0,4+1=361 число
0,0(0 оценок)
Ответ:
Fara3747
Fara3747
06.11.2020 04:12
- Чисел, делящихся на 5, может быть не более одного, иначе сумма двух чисел, делящихся на 5, будет делиться на 5.
- Если выбрано хоть одно число, дающее остаток 1 при делении на 5, то не должны быть выбраны числа, дающие остаток 4 при делении на 5, и наоборот.
- Если выбрано хоть одно число, дающее остаток 2 при делении на 5, то не должны быть выбраны числа, дающие остаток 3 при делении на 5, и наоборот.

Чисел, дающих остаток 0 при делении на 5:  2200/5 - 1500/5 + 1 = 440 - 300 + 1 = 141, и их на 1 больше, чем с каждым ненулевым остатком.

Итак, можно взять неболее 1 числа, делящегося на 5, не более половины из 280 с остатками 1 или 4, не более половины из 280 с остатками 2 или 3. Тогда можно выбрать не больше, чем 1 + 140 + 140 = 281 число.

Оценка достигается, например, если выбрать все числа с остатками 1 и 3 и число 2010.

ответ. 281
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота