1).Если нам известно конечное число(360), и речь идет о его 1/3, найдем ЧАСТЬ ОТ ЧИСЛА: (1/3) · 360 = 360:3 = 120 это 1/3 от 360: 2) По условию, то что мы нашли(120), только 2/5 задуманного числа. Найдем ЧИСЛО ПО ЕГО ЧАСТИ. 2/5ч = 120; 1ч=(120 : 2) · 5 = 60 · 5 = 300 ответ: 300 -это число, 2/5 которого равно 1/3 от 360 Проверка: (2/5)·300 = (1/3)·360; 120 = 120
Пусть наше число Х, составим и решим уравнение: (2/5) · Х = (1/3) · 360; Х = [(1/3) · 360] : (2/5); Х = (360 · 5)/(3 · 2); Х = 1800/6; Х = 300
Возьмем катер туда плыл 48 км со скоростью Vк+Vр , обратно 48 км со скоростью Vк-Vр и всёэто за 7 часов и того получаем уравнение :
48/(Vк+Vр) + 48/(Vк-Vр) = 7 (1)
Возмём плот. До момента встречи он проплыл со скоростью Vр по течению 12 км. время плота до встречи 12/Vр. А катер плыл 48 км по течению со скоростью Vк+Vр и 48-12=36 км со скоростью Vк-Vр, время катера до встречи 48/(Vк+Vр) + 36/(Vк-Vр). так как они плыли одинаковое время до встречи приравняем
12/Vр =48/(Vк+Vр) + 36/(Vк-Vр) (2)
и того у нас система 2х уравнений (1) и (2) с 2мя неизвестными и решаем
1).Если нам известно конечное число(360), и речь идет о его 1/3, найдем ЧАСТЬ ОТ ЧИСЛА:
(1/3) · 360 = 360:3 = 120 это 1/3 от 360:
2) По условию, то что мы нашли(120), только 2/5 задуманного числа. Найдем ЧИСЛО ПО ЕГО ЧАСТИ.
2/5ч = 120; 1ч=(120 : 2) · 5 = 60 · 5 = 300
ответ: 300 -это число, 2/5 которого равно 1/3 от 360
Проверка: (2/5)·300 = (1/3)·360; 120 = 120
Пусть наше число Х, составим и решим уравнение:
(2/5) · Х = (1/3) · 360; Х = [(1/3) · 360] : (2/5); Х = (360 · 5)/(3 · 2); Х = 1800/6;
Х = 300
48/(Vк+Vр) + 48/(Vк-Vр) = 7 (1)
Возмём плот. До момента встречи он проплыл со скоростью Vр по течению 12 км. время плота до встречи 12/Vр.
А катер плыл 48 км по течению со скоростью Vк+Vр и 48-12=36 км со скоростью Vк-Vр, время катера до встречи 48/(Vк+Vр) + 36/(Vк-Vр).
так как они плыли одинаковое время до встречи приравняем
12/Vр =48/(Vк+Vр) + 36/(Vк-Vр) (2)
и того у нас система 2х уравнений (1) и (2) с 2мя неизвестными и решаем