Задача №1. 1)30*3=90(км)-расстояние,которое нужно сократить катеру.2)75-30=45(км/ч)-разница в скорости.3)90:45=через 2часа катер догонит теплоход 4)75*2=150(км)-расстояние от пристани. х - время в пути катерах*75 - расстояние , которой пройдет катер(х+3)*30 - расстояние, которое пройдет теплоход Эти расстояния равны между собой (они катер должен догнать теплоход)75*х=(х+3)*3075х=30х+9045х=90х=2 часа. через два часа катер догонит теплоход.(2+3)*30=2*75=150 км - расстояние от пристани до катера и теплохода.ответ.2 часа, 150км
Вычисление производных основано на применении следующих правил, которые мы будем использовать без доказательств, поскольку доказательства выходят за рамки школьного курса математики.
♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡
Производная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).
1)30*3=90(км)-расстояние,которое нужно сократить катеру.2)75-30=45(км/ч)-разница в скорости.3)90:45=через 2часа катер догонит теплоход 4)75*2=150(км)-расстояние от пристани. х - время в пути катерах*75 - расстояние , которой пройдет катер(х+3)*30 - расстояние, которое пройдет теплоход Эти расстояния равны между собой (они катер должен догнать теплоход)75*х=(х+3)*3075х=30х+9045х=90х=2 часа. через два часа катер догонит теплоход.(2+3)*30=2*75=150 км - расстояние от пристани до катера и теплохода.ответ.2 часа, 150км
☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆
Вычисление производных основано на применении следующих правил, которые мы будем использовать без доказательств, поскольку доказательства выходят за рамки школьного курса математики.
♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡
Производная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).
☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆