1 фигуру делим на 1 квадрат со сторонами а = 2см и второй прямоугольник со сторонами а= 3см и b= 4 см.
Теперь находим площади отдельно для каждой фигуры и складываем.
S□= a×4
S= a×b
a1 = 2см
S1= ?
S1= 2см×2см= 4 см2
а2 = 3см
b2 = 4см
S2 =?
S2= 3см × 4см=12 см2
Sобщ= S1+ S2
Sобщ=4+12= 16 см2
Эту же 1-ую фигуру делим на 2 прямоугольника со сторонами а1= 5см, b1 = 2см и второй со сторонами а2= 3см, b2 = 2см. Теперь находим площадь фигур по формуле :
S= a×b
a1= 5см
b1= 2см
S1= ?
S1 = 5×2=10 см2
a2= 3см
b2=2см
S2= ?
S2= 3×2= 6 см2
Sобщ= S1+ S2
Sобщ= 10+6= 16 см
2 . Фигура.
Находим площадь аналогично нахождению площади первой фигуры .
2см+2см+1см=5см - длина 1 -ой фигуры.
а1 = 5см
b1 = 2 см
S1=?
S1= 5×2= 10см2
а2= 3см
b2= 2см
S2=?
S2= 3×2=6см2
Sобщ= S1+S2
Sобщ= 10+6=16см 2
Делим на 3 фигуры : 1 квадрат и 2 прямоугольника и находят площадь аналогично площади предыдущих фигур.
Площадь 1-ой фигуры 16см2
Площадь 2-ой фигуры 16см2.
Пошаговое объяснение:
1. Фигура.
1 фигуру делим на 1 квадрат со сторонами а = 2см и второй прямоугольник со сторонами а= 3см и b= 4 см.
Теперь находим площади отдельно для каждой фигуры и складываем.
S□= a×4
S= a×b
a1 = 2см
S1= ?
S1= 2см×2см= 4 см2
а2 = 3см
b2 = 4см
S2 =?
S2= 3см × 4см=12 см2
Sобщ= S1+ S2
Sобщ=4+12= 16 см2
Эту же 1-ую фигуру делим на 2 прямоугольника со сторонами а1= 5см, b1 = 2см и второй со сторонами а2= 3см, b2 = 2см. Теперь находим площадь фигур по формуле :
S= a×b
a1= 5см
b1= 2см
S1= ?
S1 = 5×2=10 см2
a2= 3см
b2=2см
S2= ?
S2= 3×2= 6 см2
Sобщ= S1+ S2
Sобщ= 10+6= 16 см
2 . Фигура.
Находим площадь аналогично нахождению площади первой фигуры .
2см+2см+1см=5см - длина 1 -ой фигуры.
а1 = 5см
b1 = 2 см
S1=?
S1= 5×2= 10см2
а2= 3см
b2= 2см
S2=?
S2= 3×2=6см2
Sобщ= S1+S2
Sобщ= 10+6=16см 2
Делим на 3 фигуры : 1 квадрат и 2 прямоугольника и находят площадь аналогично площади предыдущих фигур.
Рисунки прилагаются.
Подробнее - на -
1) Среди одиннадцатиклассников этой школы обязательно есть мальчик, рост которого равен 190 см:
утверждение не верно, т.к. максимальный рост меньше 190 см
2) Разница в росте между любыми двумя мальчиками из одиннадцатых классов этой школы не больше 23 см:
утверждение верно, т.к. 190-167 = 23 см.
3) Рост любого мальчика из одиннадцатых классов в этой школе не меньше 166 см:
утверждение верно, т.к. минимальный рост больше 167 см.
4) Среди одиннадцатиклассников этой школы обязательно есть мальчик, рост которого равен 167 см:
утверждение не верно т.к. минимальный рост больше 167 см
ответ: 2 и 3.