От прямоугольника с неравными сторонами отрезают квадрат со стороной, равной меньшей стороне прямоугольника. если оставшаяся часть не квадрат, процесс повторяют. докажите, что для любого n найдется прямоугольник, для которого процесс закончится ровно после n-го отрезания, причем все отрезанные квадраты (оставшийся не считается) будут разного размера
будут в рабочем состоянии составляет:
Вероятность того, что 9 машин будут в рабочем состоянии,
а одна – в ремонте, составляет:
поскольку равновероятно в ремонте может оказаться первая машина, вторая машина, третья машина и т.д. до десятой.
Вероятность того, что 8 машин будут в рабочем состоянии,
а две – в ремонте, составляет:
поскольку пара (из 10), оказавшаяся в ремонте может быть
составлена 45-тью
Все эти вероятности описывают допустимые ситуации.
Искомая вероятность представляется их суммой:
ответ:
а)
Общее число частей в отношении 7:3
7+3=10 (ч)
На одну часть приходится:
4800:10=480
-первое число 480*7=3360
-второе число 480*3=1440
б)
Числа можно соотнести:
1:4
Общее число частей:
1+4=5(ч)
На одну часть приходится:
4800:5=960
-первое число 960*1=960
-второе число 960*4=3840
в)
Общее число частей в соотношении 2/3 : 16
2/3+16=16 2/3=50/3 (ч)
На одну часть приходится
4800 : 50/3=4800*3/50=288
-первое число 288*2/3=192
- второе число 288*16=4608
г)
Числа находятся в отношении, обратном отношению чисел 3 и 2-это 2:3
Общее число частей:
2+3=5(ч)
На одну часть приходится:
4800:5=960
-первое число 960*2=1920
- второе число 960*3=2880
д)
Соотношение чисел 1/5:1
Общее число частей:
1/5+1=1 1/5(ч)
На одну часть приходится:
4800 : 1 1/5=4800:6/5=4800*5/6=2400/6=4000
-первое число 4000*1/5=800
- второе число 4000*1=4000