Исходя из условий задачи можно утверждать точно, что: Условие 1. Все 5 внуков получили пирожки; Условие 2: Каждый внук получил не меньше 1 пирожка.
Что может быть верно? А) кто-то то получил 6 пирожков , а кто-то то - 2. 10 ( пирожков всего) - 6 (получил кто-то из 5 внуков)=4 (пирожка осталось). Значит остальные 4 внука должны получить как минимум по 1 пирожку (4*1=4). Значит 2 пирожка не смог бы получить никто. ОТВЕТ: НЕВЕРНО
Б) Четыре внука получили по 1 пирожку 4 (внука)*1 (по одному пирожку)=4 (пирожка), а пятый внук мог получить от одного до шести пирожков (по желанию). ответ: ВЕРНО.
В) Два внука получили по 4 пирожка. 2 *4 = 8 пирожков получили два внука. Значит, 10-8=2 пирожка нужно разделить на трех внуков (2:3<1). Не соответствует условию 2, ведь каждый внук получил как минимум по 1 пирожку. ответ: НЕВЕРНО.
Г) Три внука получили по 3 пирожка. 3*3=9 пирожков. Остальные два внука (5-3=2) получили 1 пирожок на двоих. Не соответствует второму условию. ответ: НЕВЕРНО.
Д) Ровно четыре внука получили по 2 пирожка. Не соответствует первому условию, все 5 внуков получили пирожки, а не только (ровно) 4 внука. ответ: НЕВЕРНО.
Единственный верный вариант: Б) Четыре внука получили по 1 пирожку
Введемо поняття первісної функції та невизначеного інтеграла, розглянемо основні іх властивості.
Функція F(x) називається первісною функції f(x) на даному проміжку, якщо для будь-якого x з цього проміжку F‘(x) = f(x).
Наприклад
Перевірити, чи буде функція F(x)=sinx+2,5x2 первісною функції f(x)= cosx+5х на множині дійсних чисел?
Знайдемо похідну функції F(x), F‘(x) = cosx+2,5*2х, отже F(x) називається первісною функції f(x) на множині дійсних чисел
Основна властивість первісної
Якщо функція F(x) є первісною для функції f(x) на даному проміжку, а C – довільна стала, то F(x)+C є також первісною для функції f(x), при цьому будь-яка первісна для функції f(x) на даному проміжку може бути записана у вигляді F(x)+C , де С – довільна стала.
Первісна
Графіки будь-яких первісних одержуються один з одного паралельним перенесенням уздовж осі ОУ.
Наприклад, розв’яжемо задачу:
Для функції f(x)=–x2+3x обчисліть первісну, графік якої проходить через точку М(2;-1).
Розв’язання
Знайдемо загальний вигляд первісної даної функції:
F(x)=-x3/3+3 x2/2 +С. (1)
Оскільки графік шуканої первісної задовольняє рівнянню (1), підставимо в рівняння замість аргументу значення 2, замість функції значення -1, матимемо:
Условие 1. Все 5 внуков получили пирожки;
Условие 2: Каждый внук получил не меньше 1 пирожка.
Что может быть верно?
А) кто-то то получил 6 пирожков , а кто-то то - 2.
10 ( пирожков всего) - 6 (получил кто-то из 5 внуков)=4 (пирожка осталось). Значит остальные 4 внука должны получить как минимум по 1 пирожку (4*1=4). Значит 2 пирожка не смог бы получить никто.
ОТВЕТ: НЕВЕРНО
Б) Четыре внука получили по 1 пирожку
4 (внука)*1 (по одному пирожку)=4 (пирожка), а пятый внук мог получить от одного до шести пирожков (по желанию).
ответ: ВЕРНО.
В) Два внука получили по 4 пирожка.
2 *4 = 8 пирожков получили два внука. Значит, 10-8=2 пирожка нужно разделить на трех внуков (2:3<1). Не соответствует условию 2, ведь каждый внук получил как минимум по 1 пирожку.
ответ: НЕВЕРНО.
Г) Три внука получили по 3 пирожка.
3*3=9 пирожков. Остальные два внука (5-3=2) получили 1 пирожок на двоих. Не соответствует второму условию.
ответ: НЕВЕРНО.
Д) Ровно четыре внука получили по 2 пирожка.
Не соответствует первому условию, все 5 внуков получили пирожки, а не только (ровно) 4 внука.
ответ: НЕВЕРНО.
Единственный верный вариант: Б) Четыре внука получили по 1 пирожку
Введемо поняття первісної функції та невизначеного інтеграла, розглянемо основні іх властивості.
Функція F(x) називається первісною функції f(x) на даному проміжку, якщо для будь-якого x з цього проміжку F‘(x) = f(x).
Наприклад
Перевірити, чи буде функція F(x)=sinx+2,5x2 первісною функції f(x)= cosx+5х на множині дійсних чисел?
Знайдемо похідну функції F(x), F‘(x) = cosx+2,5*2х, отже F(x) називається первісною функції f(x) на множині дійсних чисел
Основна властивість первісної
Якщо функція F(x) є первісною для функції f(x) на даному проміжку, а C – довільна стала, то F(x)+C є також первісною для функції f(x), при цьому будь-яка первісна для функції f(x) на даному проміжку може бути записана у вигляді F(x)+C , де С – довільна стала.
Первісна
Графіки будь-яких первісних одержуються один з одного паралельним перенесенням уздовж осі ОУ.
Наприклад, розв’яжемо задачу:
Для функції f(x)=–x2+3x обчисліть первісну, графік якої проходить через точку М(2;-1).
Розв’язання
Знайдемо загальний вигляд первісної даної функції:
F(x)=-x3/3+3 x2/2 +С. (1)
Оскільки графік шуканої первісної задовольняє рівнянню (1), підставимо в рівняння замість аргументу значення 2, замість функції значення -1, матимемо:
-1=-8/3+6 +С,
Отже С=-13/3.
Шукана первісна матиме вигляд: F(x)=-x3/3+3 x2/2 -13/3
Невизначений інтеграл
Первісна. Інтеграл
Таблиця первісних (невизначених інтегралів)
Первісна. Таблиця інтегралів
Приклади знаходження невизначених інтегралів:
Первісна. Інтеграл
ІНТЕГРАЛПЕРВІСНАПОЧАТКИ АНАЛІЗУФУНКЦІЯ
Навігація по записам
ПОПЕРЕДНІЙ ЗАПИС
Похідна функції, її геометричний та механічний зміст
НАСТУПНИЙ ЗАПИС
Геометричний зміст і означення визначеного інтеграла
ЗАЛИШИТИ ВІДПОВІДЬ
Ваша e-mail адреса не оприлюднюватиметься. Обов’язкові поля позначені *
Коментар
Ім'я *
Email *
Сайт
Цей сайт використовує Akismet для зменшення спаму. Дізнайтеся, як обробляються ваші дані коментарів.
ТЕСТИ ЗНО ОНЛАЙН
На сайті osvita.ua можна пройти тестування ЗНО за текстами попередніх років онлайн
Тематичні тренувальні тести для підготовки до ЗНО з математики
ОСТАННІ ПУБЛІКАЦІЇ
Первісна та інтеграл
09.05.2020
Логарифмічні рівняння та нерівності
09.05.2020
Показникові рівняння та нерівності
07.05.2020
Куля і сфера
16.04.2020
Дослідження функції за до похідної у завданнях з параметрами
Пошаговое объяснение: