треугольники abe и cde подобны, поскольку углы aeb и ced равны как вертикальные, а углы eab и ecd равны как внутренние накрест лежащие при параллельных прямых ab и cd. поэтому соответственные стороны ae и ec этих треугольников относятся друг к другу как основания ab и cd, то есть
ae/ec = ab/cd = 30/24 = 5/4.
поскольку ae + ec = ac, то точка e делит отрезок ac в указанном выше отношении, то есть ae = (5/(4 + 5))*ac = (5/9)*ac.
находим площадь треугольника adc. воспользуемся для этого формулой герона, полагая a = dc = 24 см, b = ac = 3√73 см, c = ad = 3 см, тогда полупериметр треугольника
поскольку треугольники adc и ade имеют одинаковую высоту, а основание треугольника ade (отрезок ae) составляет 5/9 основания треугольника adc (отрезка ac), то площадь треугольника ade
площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
s = 1 a · h
2
формула площади треугольника по трем сторонам
формула герона
s = √p(p - a)(p - b)(p - c)
формула площади треугольника по двум сторонам и углу между ними
площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.
s = 1 a · b · sin γ
2
формула площади треугольника по трем сторонам и радиусу описанной окружности
s = a · b · с
4r
формула площади треугольника по трем сторонам и радиусу вписанной окружности
площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
s = p · r
где s - площадь треугольника,
a, b, c - длины сторон треугольника,
h - высота треугольника,
γ - угол между сторонами a и b,
r - радиус вписанной окружности,
r - радиус описанной окружности,
p = a + b + c - полупериметр треугольника.
2
формулы площади квадрата
квадрат
формула площади квадрата по длине стороны
площадь квадрата равна квадрату длины его стороны.
s = a2
формула площади квадрата по длине диагонали
площадь квадрата равна половине квадрата длины его диагонали.
s = 1 d2
2
где s - площадь квадрата,
a - длина стороны квадрата,
d - длина диагонали квадрата.
формула площади прямоугольника
прямоугольник
площадь прямоугольника равна произведению длин двух его смежных сторон
s = a · b
где s - площадь прямоугольника,
a, b - длины сторон прямоугольника.
вы можете воспользоваться онлайн калькулятором для расчета площади прямоугольника.
формулы площади параллелограмма
параллелограмм
формула площади параллелограмма по длине стороны и высоте
площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.
s = a · h
формула площади параллелограмма по двум сторонам и углу между ними
площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.
s = a · b · sin α
формула площади параллелограмма по двум диагоналям и углу между ними
площадь параллелограмма равна половине произведения длин его диагоналей умноженному на синус угла между ними.
s = 1 d1d2 sin γ
2
где s - площадь параллелограмма,
a, b - длины сторон параллелограмма,
h - длина высоты параллелограмма,
d1, d2 - длины диагоналей параллелограмма,
α - угол между сторонами параллелограмма,
γ - угол между диагоналями параллелограмма.
формулы площади ромба
ромб
формула площади ромба по длине стороны и высоте
площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.
s = a · h
формула площади ромба по длине стороны и углу
площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.
s = a2 · sin α
формула площади ромба по длинам его диагоналей
площадь ромба равна половине произведению длин его диагоналей.
s = 1 d1 · d2
2
где s - площадь ромба,
a - длина стороны ромба,
h - длина высоты ромба,
α - угол между сторонами ромба,
d1, d2 - длины диагоналей.
формулы площади трапеции
трапеция
формула герона для трапеции
s = a + b √(p-a)(p-b)(p-a-c)(p-a-d)
|a - b|
формула площади трапеции по длине основ и высоте
площадь трапеции равна произведению полусуммы ее оснований на высоту
s = 1 (a + b) · h
2
где s - площадь трапеции,
a, b - длины основ трапеции,
c, d - длины боковых сторон трапеции,
p = a + b + c + d - полупериметр трапеции.
2
формулы площади выпуклого четырехугольника
выпуклый четырехугольник
формула площади четырехугольника по длине диагоналей и углу между ними площадь выпуклого четырехугольника равна половине произведения его диагоналей умноженному на синус угла между ними:
s = 1 d1 d2 sin α
2
где s - площадь четырехугольника,
d1, d2 - длины диагоналей четырехугольника,
α - угол между диагоналями четырехугольника.
формула площади описанного четырехугольника (по длине периметра и радиусу вписанной окружности)
площадь выпуклого четырехугольника равна произведению полупериметра на радиус вписанной окружности
s = p · r
выпуклый четырехугольник
формула площади четырехугольника по длине сторон и значению противоположных углов
s = √(p - a)(p - b)(p - c)(p - d) - abcd cos2θ
где s - площадь четырехугольника,
a, b, c, d - длины сторон четырехугольника,
p = a + b + c + d 2 - полупериметр четырехугольника,
ответ: 17,3 кв.см
пошаговое объяснение:
по известному свойству трапеции треугольники bce и ade равновелики. поэтому найдем площадь треугольника ade.
поскольку углы dab и adc являются внутренними односторонними углами при параллельных прямых ab и dc, то их сумма равна 180º, поэтому
∠adc = 180º - ∠dab = 180º - 60º = 120º.
по теореме косинусов
ac^2 = 3^2 + (24)^2 - 2*3*24*cos 120º = 9 + 576 + 72 = 657 (кв. см), ac = √657 = 3√73 (см).
треугольники abe и cde подобны, поскольку углы aeb и ced равны как вертикальные, а углы eab и ecd равны как внутренние накрест лежащие при параллельных прямых ab и cd. поэтому соответственные стороны ae и ec этих треугольников относятся друг к другу как основания ab и cd, то есть
ae/ec = ab/cd = 30/24 = 5/4.
поскольку ae + ec = ac, то точка e делит отрезок ac в указанном выше отношении, то есть ae = (5/(4 + 5))*ac = (5/9)*ac.
находим площадь треугольника adc. воспользуемся для этого формулой герона, полагая a = dc = 24 см, b = ac = 3√73 см, c = ad = 3 см, тогда полупериметр треугольника
p = (a + b + c)/2 = 13,5 + 1,5*√73 (см),
а его площадь
s(adc) = √(p*(p - a)*(p - b)*(p -c)) = √((13,5 + 1,5*√73)*(1,5*√73 - 10,5)*(13,5 - 1,5*√73)*(10,5 + 1,5*√73)) (кв. см).
поскольку треугольники adc и ade имеют одинаковую высоту, а основание треугольника ade (отрезок ae) составляет 5/9 основания треугольника adc (отрезка ac), то площадь треугольника ade
s(ade) = (5/9)*s(adc) = (5/9)*√((13,5 + 1,5*√73)*(1,5*√73 - 10,5)*(13,5 - 1,5*√73)*(10,5 + 1,5*√
что приблизительно равно
0,5556*√(26,316*2,316*0,684*23,316) = 17,3 (кв. см).
следовательно, и площадь треугольника bce приблизительно равна 17,3 кв. см.
ответ: приблизительно 17,3 кв. см.
формулы площади треугольника
треугольник
формула площади треугольника по стороне и высоте
площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
s = 1 a · h
2
формула площади треугольника по трем сторонам
формула герона
s = √p(p - a)(p - b)(p - c)
формула площади треугольника по двум сторонам и углу между ними
площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.
s = 1 a · b · sin γ
2
формула площади треугольника по трем сторонам и радиусу описанной окружности
s = a · b · с
4r
формула площади треугольника по трем сторонам и радиусу вписанной окружности
площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
s = p · r
где s - площадь треугольника,
a, b, c - длины сторон треугольника,
h - высота треугольника,
γ - угол между сторонами a и b,
r - радиус вписанной окружности,
r - радиус описанной окружности,
p = a + b + c - полупериметр треугольника.
2
формулы площади квадрата
квадрат
формула площади квадрата по длине стороны
площадь квадрата равна квадрату длины его стороны.
s = a2
формула площади квадрата по длине диагонали
площадь квадрата равна половине квадрата длины его диагонали.
s = 1 d2
2
где s - площадь квадрата,
a - длина стороны квадрата,
d - длина диагонали квадрата.
формула площади прямоугольника
прямоугольник
площадь прямоугольника равна произведению длин двух его смежных сторон
s = a · b
где s - площадь прямоугольника,
a, b - длины сторон прямоугольника.
вы можете воспользоваться онлайн калькулятором для расчета площади прямоугольника.
формулы площади параллелограмма
параллелограмм
формула площади параллелограмма по длине стороны и высоте
площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.
s = a · h
формула площади параллелограмма по двум сторонам и углу между ними
площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.
s = a · b · sin α
формула площади параллелограмма по двум диагоналям и углу между ними
площадь параллелограмма равна половине произведения длин его диагоналей умноженному на синус угла между ними.
s = 1 d1d2 sin γ
2
где s - площадь параллелограмма,
a, b - длины сторон параллелограмма,
h - длина высоты параллелограмма,
d1, d2 - длины диагоналей параллелограмма,
α - угол между сторонами параллелограмма,
γ - угол между диагоналями параллелограмма.
формулы площади ромба
ромб
формула площади ромба по длине стороны и высоте
площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.
s = a · h
формула площади ромба по длине стороны и углу
площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.
s = a2 · sin α
формула площади ромба по длинам его диагоналей
площадь ромба равна половине произведению длин его диагоналей.
s = 1 d1 · d2
2
где s - площадь ромба,
a - длина стороны ромба,
h - длина высоты ромба,
α - угол между сторонами ромба,
d1, d2 - длины диагоналей.
формулы площади трапеции
трапеция
формула герона для трапеции
s = a + b √(p-a)(p-b)(p-a-c)(p-a-d)
|a - b|
формула площади трапеции по длине основ и высоте
площадь трапеции равна произведению полусуммы ее оснований на высоту
s = 1 (a + b) · h
2
где s - площадь трапеции,
a, b - длины основ трапеции,
c, d - длины боковых сторон трапеции,
p = a + b + c + d - полупериметр трапеции.
2
формулы площади выпуклого четырехугольника
выпуклый четырехугольник
формула площади четырехугольника по длине диагоналей и углу между ними площадь выпуклого четырехугольника равна половине произведения его диагоналей умноженному на синус угла между ними:
s = 1 d1 d2 sin α
2
где s - площадь четырехугольника,
d1, d2 - длины диагоналей четырехугольника,
α - угол между диагоналями четырехугольника.
формула площади описанного четырехугольника (по длине периметра и радиусу вписанной окружности)
площадь выпуклого четырехугольника равна произведению полупериметра на радиус вписанной окружности
s = p · r
выпуклый четырехугольник
формула площади четырехугольника по длине сторон и значению противоположных углов
s = √(p - a)(p - b)(p - c)(p - d) - abcd cos2θ
где s - площадь четырехугольника,
a, b, c, d - длины сторон четырехугольника,
p = a + b + c + d 2 - полупериметр четырехугольника,
θ = α + β 2 - полусумма двух противоположных углов четырехугольника.
формула площади четырехугольника, вокруг которого можно описать окружность
s = √(p - a)(p - b)(p - c)(p - d)
формулы площади круга
круг
формула площади круга через радиус
площадь круга равна произведению квадрата радиуса на число пи.
s = π r2
формула площади круга через диаметр
площадь круга равна четверти произведения квадрата диаметра на число пи.
s = 1 π d2
4
где s - площадь круга,
r - длина радиуса круга,
d - длина диаметра круга.