А) Пусть произведение чисел n – 1, n, n + 1 является точной m-й степенью. Поскольку число n взаимно просто с числами n – 1 и n + 1, то любой простой делитель числа n входит в разложение числа (n – 1)n(n + 1) с таким же показателем, с каким он входит в разложение числа n, то есть он входит в разложение числа n в степени, кратной m. Поэтому n (а следовательно, и n²) является точной m-й степенью. Но и (n – 1)(n + 1) = n² – 1 также является m-й степенью натурального числа, как частное от деления чисел (n – 1)n(n + 1) и n, являющихся m-ми степенями. Таким образом, нами найдены два последовательных натуральных числа (n² и n² – 1), являющихся m-ми степенями. Ясно, что это невозможно. Противоречие.
б) Среди пяти подряд идущих чисел есть два чётных, одно из которых делится на 4. Поэтому в разложении произведения на простые множители число 2 встретится трижды. Значит, произведение делится на 3, 5 и 8, то есть и на их произведение 120.
26, 42, 68, 110, 178.
Закономерность №2:77, 84, 72, 79, 67.
Закономерность №3:81, 243, 729, 2 187, 6 561.
Пошаговое объяснение:
Закономерность №1:2 + 4 = 6
6 + 4 = 10
10 + 6 = 16
16 + 10 = 26
26 + 16 = 42
42 + 26 = 68
68 + 42 = 110
110 + 68 = 178
Закономерность №2:99 - 12 = 87
87 + 7 = 94
94 - 12 = 82
82 + 7 = 89
89 - 12 = 77
77 + 7 = 84
84 - 12 = 72
72 + 7 = 79
79 - 12 = 67
Закономерность №3:1 * 3 = 3
3 * 3 = 9
9 * 3 = 27
27 * 3 = 81
81 * 3 = 243
243 * 3 = 729
729 * 3 = 2 187
2 187 * 3 = 6 561
УДАЧИ! ОБРАЩАЙТЕСЬ!А) Пусть произведение чисел n – 1, n, n + 1 является точной m-й степенью. Поскольку число n взаимно просто с числами n – 1 и n + 1, то любой простой делитель числа n входит в разложение числа (n – 1)n(n + 1) с таким же показателем, с каким он входит в разложение числа n, то есть он входит в разложение числа n в степени, кратной m. Поэтому n (а следовательно, и n²) является точной m-й степенью. Но и (n – 1)(n + 1) = n² – 1 также является m-й степенью натурального числа, как частное от деления чисел (n – 1)n(n + 1) и n, являющихся m-ми степенями. Таким образом, нами найдены два последовательных натуральных числа (n² и n² – 1), являющихся m-ми степенями. Ясно, что это невозможно. Противоречие.
б) Среди пяти подряд идущих чисел есть два чётных, одно из которых делится на 4. Поэтому в разложении произведения на простые множители число 2 встретится трижды. Значит, произведение делится на 3, 5 и 8, то есть и на их произведение 120.
Пошаговое объяснение:
А) не может