Найти общее решение дифференциального уравнения и частное решение, удовлетворяющее начальным условиям y=y0 при х = х0. y''-4y'+5y=5x^2-4 y'(0)=1, y(0)=1
(x-a)^2 +(y-2a)^2 = 2+a → уравнение окружности с радиусом √(2+а) и центром в координатах (а;2а). Радиус ≥0, подставим а=-2 и найдем координаты
(х+2)^2+(у+4)^2=0. Радиус ноль, координаты точки (-2;-4), что находятся в пределах системы неравенств с прямыми. При увеличении параметра окружность будет двигаться вверх, центр будет лежать на прямой у=2х. Единственное решение будет тогда, когда окружность касается верхней прямой, тоесть 2x=-x/2 +5
5x/2 = 5, x = 2 => y =4. Подставляем в уравнение окружности. (2-а)^2+(4-2а)^2 = 2+а
Раскрываем скобки, решаем и получаем а = 3, а = 6/5. Так как для единственности решения окружность должна касаться прямой у=-х/2+5 сверху, то нам подходит большее значение параметра а=3, ответ а=3
Пошаговое объяснение:
Раскроем модуль в первом уравнении
-11 ≤ x+2y+1 ≤ 11, (x-a)^2 +(y-2a)^2 = 2+a
-12-x≤2y≤10-x, (x-a)^2 +(y-2a)^2 = 2+a
Получаем систему;:
y ≥ -x/2 - 6
y≤ -x/2 +5
(x-a)^2 +(y-2a)^2 = 2+a → уравнение окружности с радиусом √(2+а) и центром в координатах (а;2а). Радиус ≥0, подставим а=-2 и найдем координаты
(х+2)^2+(у+4)^2=0. Радиус ноль, координаты точки (-2;-4), что находятся в пределах системы неравенств с прямыми. При увеличении параметра окружность будет двигаться вверх, центр будет лежать на прямой у=2х. Единственное решение будет тогда, когда окружность касается верхней прямой, тоесть 2x=-x/2 +5
5x/2 = 5, x = 2 => y =4. Подставляем в уравнение окружности. (2-а)^2+(4-2а)^2 = 2+а
Раскрываем скобки, решаем и получаем а = 3, а = 6/5. Так как для единственности решения окружность должна касаться прямой у=-х/2+5 сверху, то нам подходит большее значение параметра а=3, ответ а=3
1)
3х-3<х-3 5х+15>2х+3
2х<0 3х>-12
х<0 х>-4
Потом чертишь числовую прямую на которой отмечаешь точку 0 и -4
ответ:х принадлежит (-4;0)
2)
{ 2(y-2) >= 3y+1
{ 5(y+1) <= 4y+3
Раскрываем скобки
{ 2y - 4 >= 3y + 1
{ 5y + 5 <= 4y + 3
Упрощаем
{ y <= -5
{ y <= -2
ответ: y = (-oo; -5]
3)
{ 3(2y-3) <= y+6
{ 4(3y+1) >= 5y-10
Раскрываем скобки
{ 6y - 9 <= y + 6
{ 12y + 4 >= 5y - 10
Упрощаем
{ 5y <= 15; y <= 3
{ 7y >= -14; y >= -2
ответ: y = [-2; 3]
4)
{ 2(3x+2) > 5(x-1)
{ 7(x+2) < 3(2x+3)
Раскрываем скобки
{ 6x + 4 > 5x - 5
{ 7x + 14 < 6x + 9
Упрощаем
{ x > -9
{ x < -5
ответ: x = (-9; -5)