На курсы иностранных языков зачисленно 300 слушателей. из них или французский изучают 250; и 60 человек; и французский 80 человек. число слушателей,изучающих только французский язык, равно числу слушателей, изучающих только ; 70 человек изучают только . занятия по и французскому языкам проводится одновременно. сколько слушателей изучают или французский языки? сколько слушателей не посещают занятия?
Одним из наиболее мощных методов интегрирования является замена переменной в интеграле. Поясним суть этого метода. Пусть F'(x)=f(x), тогда
\int f(x)\,dx= \int F'(x)\,dx= \int d\bigl(F(x)\bigr)=F(x)+C.
Но в силу инвариантности формы дифференциала равенство d\bigl(F(x)\bigr)=F'(x)\,dx= f(x)\,dx остается справедливым и в случае, когда {x} — промежуточный аргумент, т.е. x=\varphi(t). Это значит, что формула \textstyle{\int f(x)\,dx=F(x)+C} верна и при x=\varphi(t). Таким образом,
\int f\bigl(\varphi(t)\bigr)\,d\bigl(\varphi(t)\bigr)= F\bigl(\varphi(t)\bigr)+C, или \int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt= F\bigl(\varphi(t)\bigr)+C.
Итак, если F(t) является первообразной для f(x) на промежутке {X}, а x=\varphi(t) — дифференцируемая на промежутке {T} функция, значения которой принадлежат {X}, то F\bigl(\varphi(t)\bigr) — первообразная для f\bigl(\varphi(t)\bigr)\varphi'(t),~t\in T, и, следовательно,
\int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt= \int f(x)\,dx\,.
Эта формула позволяет свести вычисление интеграла \textstyle{\int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt} к вычислению интеграла \textstyle{\int f(x)\,dx}. При этом мы подставляем вместо \varphi(t) переменную {x}, а вместо \varphi'(t)\,dt дифференциал этой переменной, т. е. dx. Поэтому полученная формула называется формулой замены переменной под знаком неопределенного интеграла. Она используется на практике как "слева направо", так и "справа налево". Метод замены переменной позволяет сводить многие интегралы к табличным. После вычисления интеграла \textstyle{\int f(x)\,dx} надо снова заменить {x} на \varphi(t).
Пример 1. Вычислим \int\cos2t\,dt.
Решение. Введем новую переменную {x}, положив 2t=x. Тогда 2\,dt=dx,~dt=\frac{1}{2}\,dx и, следовательно,
\int\cos2t\,dt= \int\cos{x}\,\frac{1}{2}\,dx= \frac{1}{2}\int\cos{x}\,dx= \frac{1}{2}\sin{x}+C= \frac{1}{2}\sin2t+C.
Замечание. Вычисление короче записывают так:
\int\cos2t\,dt= \frac{1}{2}\int\cos2t\,d(2t)= \frac{1}{2}\sin2t+C.
Пошаговое объяснение:
Рассмотрим один из обработки горловины.
Первый
Обтачку выкраивают по форме горловины. Ширина обтачки 6 см. Части обтачки стачивают швом шириной 5-7 мм и разутюживают. Если при обработке горловины используется прокладочный материал, то его выкраивают так же, как и обтачку. Затем прокладку соединяют с изнаночной стороной обтачки, и дальнейшая обработка горловины производится вместе с прокладкой. Внутренние срезы обтачки обметывают на специальной машине, затем перегибают на изнанку на 5-7 мм и застрачивают с лицевой стороны на 1-2 мм от подогнутого края.
Концы обтачки притачиваются к припускам на обработку застежки швом шириной 7 мм. Швы отгибают в сторону припуска застежки (если застежка в изделии расположена от горловины спинки или переда).
Обтачку накладывают на горловину изделия лицевыми сторонами внутрь, совмещая швы стачивания обтачек с плечевыми швами (или боковыми), уравнивают срезы, приметывают срез горловины швом шириной 7 мм. Шов обтачивания горловины отгибают в сторону обтачки и с лицевой стороны настрачивают со стороны обтачки на 2-3 мм от шва обтачки. В изделиях с застежкой до горловины настрачивание шва производится до того места, как только позволяет подойти лапка швейной машины, т.е на расстоянии 5-6 см от застежки).