на координатной прямой отмечены числа 0 a и b отметьте на этой прямой какое нибудь число x так чтобы при этом выполнялись три условия x-a>0, x-b>0, b2x>0
Разложим числа на простые множители и подчеркнем общие множители чисел:
15 = 3 · 5
18 = 2 · 3 · 3
Общие множители чисел: 3
НОД (15; 18) = 3
Наименьшее общее кратное::
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем меньшее число. Подчеркнем в разложении меньшего числа множители, которые не вошли в разложение наибольшего числа.
18 = 2 · 3 · 3
15 = 3 · 5
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (15; 18) = 2 · 3 · 3 · 5 = 90
Наибольший общий делитель НОД (15; 18) = 3
Наименьшее общее кратное НОК (15; 18) = 90
Наибольший общий делитель::
Разложим числа на простые множители и подчеркнем общие множители чисел:
600 = 2 · 2 · 2 · 3 · 5 · 5
1075 = 5 · 5 · 43
Общие множители чисел: 5; 5
Чтобы найти НОД чисел, необходимо перемножить их общие множители:
НОД (600; 1075) = 5 · 5 = 25
Наименьшее общее кратное::
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем меньшее число. Подчеркнем в разложении меньшего числа множители, которые не вошли в разложение наибольшего числа.
1075 = 5 · 5 · 43
600 = 2 · 2 · 2 · 3 · 5 · 5
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
Наибольший общий делитель::
Разложим числа на простые множители и подчеркнем общие множители чисел:
15 = 3 · 5
18 = 2 · 3 · 3
Общие множители чисел: 3
НОД (15; 18) = 3
Наименьшее общее кратное::
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем меньшее число. Подчеркнем в разложении меньшего числа множители, которые не вошли в разложение наибольшего числа.
18 = 2 · 3 · 3
15 = 3 · 5
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (15; 18) = 2 · 3 · 3 · 5 = 90
Наибольший общий делитель НОД (15; 18) = 3
Наименьшее общее кратное НОК (15; 18) = 90
Наибольший общий делитель::
Разложим числа на простые множители и подчеркнем общие множители чисел:
600 = 2 · 2 · 2 · 3 · 5 · 5
1075 = 5 · 5 · 43
Общие множители чисел: 5; 5
Чтобы найти НОД чисел, необходимо перемножить их общие множители:
НОД (600; 1075) = 5 · 5 = 25
Наименьшее общее кратное::
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем меньшее число. Подчеркнем в разложении меньшего числа множители, которые не вошли в разложение наибольшего числа.
1075 = 5 · 5 · 43
600 = 2 · 2 · 2 · 3 · 5 · 5
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (600; 1075) = 5 · 5 · 43 · 2 · 2 · 2 · 3 = 25800
Наибольший общий делитель НОД (600; 1075) = 25
Наименьшее общее кратное НОК (600; 1075) = 25800
Пошаговое объяснение:
Пошаговое объяснение:
1) 7/20 и 5/12 = 21/60 и 25/60 ( первую дробь умножаем на 3, вторую на 5)
2)11/24 и 1/30 = 55/120 и 4/120( первую дробь умножаем на 5, вторую на 10)
3) 3/16 и 4/12 = 9/48 и 28/48( первую дробь умножаем на 3, вторую на 4)
4) 11/18 и 7/12 = 22/36 и 21/36( первую дробь умножаем на 2, вторую на 3)
5) 1/12 и 2/9 = 3/36 и 8/36( первую дробь умножаем на 3, вторую на 3)
6) 4/21 и 13/28 = 16/84 и 39/84( первую дробь умножаем на 4, вторую на 3)
7) 8/15 и 5/12= 32/60 и 25/60( первую дробь умножаем на 4, вторую на 5)
8) 7/30 и 1/12 = 14/60 и 5/60( первую дробь умножаем на 2, вторую на 5)