От пристани А к пристани Б вниз по течению реки стартует катер, а одновременно с ним по берегу – велосипедист, который движется неравномерно. Расстояние между пристанями 6 км.
Капитану катера передается информация о скорости велосипедиста, и он, моментально реагируя, поддерживает скорость катера относительно воды вдвое больше скорости велосипедиста. Через 30 мин катер доплыл до пристани Б. Определите скорость течения реки, если к этому моменту велосипедист проехал всего лишь 1/3 пути.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость велосипедиста.
2х - скорость катера.
у - скорость течения реки.
(2х + у) - скорость катера по течению.
6 км - расстояние катера.
6/(2х + у) - время катера в пути.
1/3 пути = 2 км - расстояние велосипедиста.
Время в пути катера и велосипедиста одинаковое, равно 0,5 часа.
По условию задачи система уравнений:
х * 0,5 = 2
6/(2х + у) = 0,5
Вычислить х в первом уравнении:
0,5х = 2
х = 2/0,5
х = 4 (км/час) - скорость велосипедиста.
Подставить значение х во второе уравнение и вычислить у:
6/(2*4 + у) = 0,5
6/(8 + у) = 0,5
Умножить уравнение на (8 + у), чтобы избавиться от дробного выражения:
Из жизни дробей. Вы никогда не задумывались, что делают цифры, когда вы закрываете тетрадку? Между прочим, они и без вас неплохо живут! Ходят в гости, складываются и вычитаются, делятся, умножаются… И не всегда на место возвращаются! Ведь не вы же все эти глупые ошибки делаете? Вот однажды две Дроби поссорились. Это не секрет, что у Дробей ужасно скверный характер. То они сокращаться не хотят, то приводиться. Да вы и сами это знаете. На сей раз это были почтенные 17/18 и 18/19. Они выясняли, кто из них больше. (Вы то, конечно, сразу бы определили!) «Я больше!»,- кричит 18/19, -«У меня Числитель больше! Ведь всем известно, что чем больше Числитель, тем больше Дробь!». «Нет!»,- не уступает вторая,- «ты на свой Знаменатель посмотри! У меня Знаменатель меньше, значит, я - больше!». «Да приведитесь вы, наконец, к Общему Знаменателю! Тогда сразу понятно будет»,- советуют им. «Вот еще. Я не желаю иметь с ней ничего общего!»,- не соглашается одна. « Зачем мне эта морока, когда я чувствую, что Я больше», - возражает другая. Пришлось вызывать Уравнителя. А у того есть свой метод, и эталон припасен. Берет ЕДИНИЦУ и отнимает от нее спорщиц. «Так, гражданочки: 1 - (17/18) = 1/18; 1 - (18/19) = 1/19. Выходит-то, что 1/19 МЕНЬШЕ, чем 1/18. Значит, и 18/19 будет немного БЛИЖЕ к ЕДИНИЦЕ, чем 17/18.». А к Уравнителю уж очередь выстроилась ему Решите, кто больше: 92/93 или 93/94? А то ему еще нужно поскорее Обыкновенные Дроби 4/5 и 3/8 в Десятичные перевести, иначе они на самолет опоздают!
В решении.
Пошаговое объяснение:
От пристани А к пристани Б вниз по течению реки стартует катер, а одновременно с ним по берегу – велосипедист, который движется неравномерно. Расстояние между пристанями 6 км.
Капитану катера передается информация о скорости велосипедиста, и он, моментально реагируя, поддерживает скорость катера относительно воды вдвое больше скорости велосипедиста. Через 30 мин катер доплыл до пристани Б. Определите скорость течения реки, если к этому моменту велосипедист проехал всего лишь 1/3 пути.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость велосипедиста.
2х - скорость катера.
у - скорость течения реки.
(2х + у) - скорость катера по течению.
6 км - расстояние катера.
6/(2х + у) - время катера в пути.
1/3 пути = 2 км - расстояние велосипедиста.
Время в пути катера и велосипедиста одинаковое, равно 0,5 часа.
По условию задачи система уравнений:
х * 0,5 = 2
6/(2х + у) = 0,5
Вычислить х в первом уравнении:
0,5х = 2
х = 2/0,5
х = 4 (км/час) - скорость велосипедиста.
Подставить значение х во второе уравнение и вычислить у:
6/(2*4 + у) = 0,5
6/(8 + у) = 0,5
Умножить уравнение на (8 + у), чтобы избавиться от дробного выражения:
6 = 0,5 * (8 + у)
6 = 4 + 0,5у
0,5у = 2
у = 2/0,5
у = 4 (км/час) - скорость течения реки.
Проверка:
2 : 4 = 0,5 (часа) - время велосипедиста, верно.
6 : (2 * 4 + 4) = 6 : 12 = 0,5 (часа) - время катера, верно.
Вы никогда не задумывались, что делают цифры, когда вы закрываете тетрадку? Между прочим, они и без вас неплохо живут! Ходят в гости, складываются и вычитаются, делятся, умножаются… И не всегда на место возвращаются! Ведь не вы же все эти глупые ошибки делаете?
Вот однажды две Дроби поссорились. Это не секрет, что у Дробей ужасно скверный характер. То они сокращаться не хотят, то приводиться. Да вы и сами это знаете. На сей раз это были почтенные 17/18 и 18/19. Они выясняли, кто из них больше. (Вы то, конечно, сразу бы определили!) «Я больше!»,- кричит 18/19, -«У меня Числитель больше! Ведь всем известно, что чем больше Числитель, тем больше Дробь!». «Нет!»,- не уступает вторая,- «ты на свой Знаменатель посмотри! У меня Знаменатель меньше, значит, я - больше!».
«Да приведитесь вы, наконец, к Общему Знаменателю! Тогда сразу понятно будет»,- советуют им. «Вот еще. Я не желаю иметь с ней ничего общего!»,- не соглашается одна. « Зачем мне эта морока, когда я чувствую, что Я больше», - возражает другая.
Пришлось вызывать Уравнителя. А у того есть свой метод, и эталон припасен. Берет ЕДИНИЦУ и отнимает от нее спорщиц. «Так, гражданочки: 1 - (17/18) = 1/18; 1 - (18/19) = 1/19. Выходит-то, что 1/19 МЕНЬШЕ, чем 1/18. Значит, и 18/19 будет немного БЛИЖЕ к ЕДИНИЦЕ, чем 17/18.».
А к Уравнителю уж очередь выстроилась ему Решите, кто больше: 92/93 или 93/94? А то ему еще нужно поскорее Обыкновенные Дроби 4/5 и 3/8 в Десятичные перевести, иначе они на самолет опоздают!