Al+K₂Cr₂O₇+H₂SO₄ →Al₂(SO₄)₃+Cr₂(SO₄)₃+K₂SO₄+H₂O Для ОВР нужно узнать какие элементы меняют свою степень окисления. Al⁰→ -3e⁻ →Al⁺³ ║ 3 ║1 Cr⁺⁶→ +3e⁻ →Cr⁺³║ 3 ║1
1). Теперь спокойно ставим 1 перед Al и Cr в правой части уравнения: Al+K₂Cr₂O₇+H₂SO₄ →1Al₂(SO₄)₃+1Cr₂(SO₄)₃+K₂SO₄+H₂O 2). Уравниваем Al и Cr в левой части уравнения: 2Al+1K₂Cr₂O₇+H₂SO₄ →1Al₂(SO₄)₃+1Cr₂(SO₄)₃+K₂SO₄+H₂O 3). Уравниваем K в правой части уравнения: 2Al+1K₂Cr₂O₇+H₂SO₄ →1Al₂(SO₄)₃+1Cr₂(SO₄)₃+1K₂SO₄+H₂O 4). Уравниваем H₂SO₄. Для этого считаем сколько в правой части остатка SO₄: 3+3+1 = 7. 2Al+1K₂Cr₂O₇+7H₂SO₄ →1Al₂(SO₄)₃+1Cr₂(SO₄)₃+1K₂SO₄+H₂O 5). Осталась вода: 2Al+1K₂Cr₂O₇+7H₂SO₄ →1Al₂(SO₄)₃+1Cr₂(SO₄)₃+1K₂SO₄+7H₂O
Без катализатора бензол не реагирует ни с хлором, ни с бромом. При добавлении же кислот Льюиса бензол легко бромируется и хлорируется.
(12)
бензол хлорбензол
Активным катализатором является не само железо, а хлорид железа (III) образующийся при взаимодействии железа с хлором.
Хлорид железа (III) является слабой кислотой Льюиса. Он соединяется с хлором с образованием кислотно-основного комплекса
кислотно-основный комплекс
При галогенировании в присутствии кислот Льюиса в качестве электрофилов выступают комплексы галогенов с кислотами Льюиса.
Механизм
Атака бензола комплексом хлора с хлоридом железа (III)
циклодиенильный катион
2. Потеря протона циклодиенильным катионом
тетрахлорферрат
При хлорировании бензола побочно образуются ди- и трихлорбензолы:
(13)
1,2-дихлор- 1,4-дихлор- 1,2,4-трихлор-
бензол бензол бензол
Нитрование хлорбензола приводит к образованию орто- и пара-хлорбензолов.
(14)
орто-хлорбензол пара-хлорбензол
Хлорирование нитробензола дает мта-хлорнитробензол
(15)
мета-хлорбензолов
6.1.4. Алкилирование
Важный метод синтеза алкилбензолов состоит в действии на ароматические соединения алкилгалогенидов при каталитическом участии галогенидов металлов, обычно хлорида алюминия. Этот называют алкилированием по Фриделю-Крафтсу. Катализатор обеспечивает образование катиона, который и атакует молекулу ароматического соединения. Алкилированием бензола трет-бутилхлоридом получают трет-бутилбензол:
(16)
трет-бутилхлорид трет-бутилбензол
Алкилгалогениды сами по себе недостаточно электрофильны чтобы реагировать с бензолом, а вот их кислотно-основные комплексы с хлоридом алюминия могут
кислотно-основный комплекс
предварительно генерируя карбокатионы
трет-бутил катион тетрахлоралюминат
Механизм
1. трет-Бутил катион атакует -электроны бензола с образованием углерод-углеродной связи
циклодиенильный катион
Потеря им протона приводит к образованию трет-бутилбензола
Продуктом алкилирования бензола изобутилхлоридом является трет-бутилбензол:
(17)
изобутилхлорид трет-бутилбензол
Реакция проходит по сходному механизму:
Алкилированием бензола этилбромидом можно получить этилбензол:
(18)
этилбензол
Механизм
Алкилирование бензола н-бутилхлоридом приводит к образованию двух продуктов
(19)
н-бутилхлорид н-бутилбензол втор-бутилбензол
Любой компонент смеси образовывать карбокатион, может алкилировать бензол. Наиболее часто источниками карбокатионов служат алкены и спирты, генерирующие катионы при взаимодействии с сильными кислотами. Алкилированием бензола этиленом получают этилбензол:
(20)
Алкилированием бензола пропиленом получают кумол:
(21)
А. Хлорметилирование
Частным случаем алкилирования является реакция бензола с формальдегидом и HCl в присутствии хлорида цинка приводящая к образованию бензилхлорида:
Для ОВР нужно узнать какие элементы меняют свою степень окисления.
Al⁰→ -3e⁻ →Al⁺³ ║ 3 ║1
Cr⁺⁶→ +3e⁻ →Cr⁺³║ 3 ║1
1). Теперь спокойно ставим 1 перед Al и Cr в правой части уравнения:
Al+K₂Cr₂O₇+H₂SO₄ →1Al₂(SO₄)₃+1Cr₂(SO₄)₃+K₂SO₄+H₂O
2). Уравниваем Al и Cr в левой части уравнения:
2Al+1K₂Cr₂O₇+H₂SO₄ →1Al₂(SO₄)₃+1Cr₂(SO₄)₃+K₂SO₄+H₂O
3). Уравниваем K в правой части уравнения:
2Al+1K₂Cr₂O₇+H₂SO₄ →1Al₂(SO₄)₃+1Cr₂(SO₄)₃+1K₂SO₄+H₂O
4). Уравниваем H₂SO₄. Для этого считаем сколько в правой части остатка SO₄: 3+3+1 = 7.
2Al+1K₂Cr₂O₇+7H₂SO₄ →1Al₂(SO₄)₃+1Cr₂(SO₄)₃+1K₂SO₄+H₂O
5). Осталась вода:
2Al+1K₂Cr₂O₇+7H₂SO₄ →1Al₂(SO₄)₃+1Cr₂(SO₄)₃+1K₂SO₄+7H₂O
2Al+1K₂Cr₂O₇+7H₂SO₄ →1Al₂(SO₄)₃+1Cr₂(SO₄)₃+1K₂SO₄+7H₂O
Без катализатора бензол не реагирует ни с хлором, ни с бромом. При добавлении же кислот Льюиса бензол легко бромируется и хлорируется.
(12)
бензол хлорбензол
Активным катализатором является не само железо, а хлорид железа (III) образующийся при взаимодействии железа с хлором.
Хлорид железа (III) является слабой кислотой Льюиса. Он соединяется с хлором с образованием кислотно-основного комплекса
кислотно-основный комплекс
При галогенировании в присутствии кислот Льюиса в качестве электрофилов выступают комплексы галогенов с кислотами Льюиса.
Механизм
Атака бензола комплексом хлора с хлоридом железа (III)
циклодиенильный катион
2. Потеря протона циклодиенильным катионом
тетрахлорферрат
При хлорировании бензола побочно образуются ди- и трихлорбензолы:
(13)
1,2-дихлор- 1,4-дихлор- 1,2,4-трихлор-
бензол бензол бензол
Нитрование хлорбензола приводит к образованию орто- и пара-хлорбензолов.
(14)
орто-хлорбензол пара-хлорбензол
Хлорирование нитробензола дает мта-хлорнитробензол
(15)
мета-хлорбензолов
6.1.4. АлкилированиеВажный метод синтеза алкилбензолов состоит в действии на ароматические соединения алкилгалогенидов при каталитическом участии галогенидов металлов, обычно хлорида алюминия. Этот называют алкилированием по Фриделю-Крафтсу. Катализатор обеспечивает образование катиона, который и атакует молекулу ароматического соединения. Алкилированием бензола трет-бутилхлоридом получают трет-бутилбензол:
(16)
трет-бутилхлорид трет-бутилбензол
Алкилгалогениды сами по себе недостаточно электрофильны чтобы реагировать с бензолом, а вот их кислотно-основные комплексы с хлоридом алюминия могут
кислотно-основный комплекс
предварительно генерируя карбокатионы
трет-бутил катион тетрахлоралюминат
Механизм
1. трет-Бутил катион атакует -электроны бензола с образованием углерод-углеродной связи
циклодиенильный катион
Потеря им протона приводит к образованию трет-бутилбензола
Продуктом алкилирования бензола изобутилхлоридом является трет-бутилбензол:
(17)
изобутилхлорид трет-бутилбензол
Реакция проходит по сходному механизму:
Алкилированием бензола этилбромидом можно получить этилбензол:
(18)
этилбензол
Механизм
Алкилирование бензола н-бутилхлоридом приводит к образованию двух продуктов
(19)
н-бутилхлорид н-бутилбензол втор-бутилбензол
Любой компонент смеси образовывать карбокатион, может алкилировать бензол. Наиболее часто источниками карбокатионов служат алкены и спирты, генерирующие катионы при взаимодействии с сильными кислотами. Алкилированием бензола этиленом получают этилбензол:
(20)
Алкилированием бензола пропиленом получают кумол:
(21)
А. Хлорметилирование
Частным случаем алкилирования является реакция бензола с формальдегидом и HCl в присутствии хлорида цинка приводящая к образованию бензилхлорида:
(22)
бензилхлорид