В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
кратос2315
кратос2315
06.09.2022 08:06 •  Информатика

Паскаль
если можно с объяснением

Показать ответ
Ответ:
shvetzovayuliy
shvetzovayuliy
17.01.2023 05:11
Простые числа от 5584 до 6654. В скобках после каждого я поставил его сумму цифр, а в конце строки количество четных:
5591(20), 5623(16), 5639(23), 5641(16), 5647(22), - 4
5651(17), 5653(19), 5657(23), 5659(25), 5669(26), - 1
5683(22), 5689(28), 5693(23), 5701(13), 5711(14), - 3
5717(20), 5737(22), 5741(17), 5743(19), 5749(25), - 2
5779(28), 5783(23), 5791(22), 5801(14), 5807(20), - 4
5813(17), 5821(16), 5827(22), 5839(25), 5843(20), - 3
5849(26), 5851(19), 5857(25), 5861(20), 5867(26), - 3
5869(28), 5879(29), 5881(22), 5897(29), 5903(17), - 2
5923(19), 5927(23), 5939(26), 5953(22), 5981(23), - 2
5987(29), 6007(13), 6011(09), 6029(17), 6037(16), - 1
6043(13), 6047(17), 6053(14), 6067(19), 6073(16), - 2
6079(22), 6089(23), 6091(16), 6101(08), 6113(11), - 3
6121(10), 6131(11), 6133(13), 6143(14), 6151(13), - 2
6163(17), 6173(17), 6197(23), 6199(25), 6203(11), - 0
6211(10), 6217(16), 6221(11), 6229(19), 6247(19), - 2
6257(20), 6263(17), 6269(23), 6271(16), 6277(22), - 3
6287(23), 6299(26), 6301(10), 6311(11), 6317(17), - 2
6323(14), 6329(20), 6337(19), 6343(16), 6353(17), - 3
6359(23), 6361(16), 6367(22), 6373(19), 6379(25), - 2
6389(26), 6397(25), 6421(13), 6427(19), 6449(23), - 1
6451(16), 6469(25), 6473(20), 6481(19), 6491(20), - 3
6521(14), 6529(22), 6547(22), 6551(17), 6553(19), - 3
6563(20), 6569(26), 6571(19), 6577(25), 6581(20), - 3
6599(29), 6607(19), 6619(22), 6637(22), 6653(20). - 3
Всего 120 простых чисел, из них 57 имеют четную сумму цифр.
0,0(0 оценок)
Ответ:
Sanshooos
Sanshooos
15.08.2021 01:28
Рассмотрим первое уравнение. В этом уравнении имеется импликация, которая принимает значение 0 для набора исходных значений 1 и 0. Значит, если x[i]=1, то для всех j>=i в решениях этого уравнения должно быть x[j]=1.
Из данных рассуждений следует, что решениями первого уравнения будут (значения переменных перечислены в порядке x1, x2, x3, x4):
  0000, 0001, 0011, 0111, 1111 (всего 5 наборов)
Чтобы убедиться в этом можно также сделать таблицу истинности для первого уравнения (она должна содержать 2^4=16 строк).
 Очевидно, что второе и третье уравнение имеют по 5 аналогичных решений.
Обозначим наборы значений переменных x, y и z соответственно X, Y и Z.
Решением системы в этом случае будут наборы {X, Y, Z}, причем, учитывая 4-е уравнение, в состав этих наборов обязательно должен входить хотя бы один набор 0000.
Пересчитываем все наборы:
{0000, Y, Z}
- так как для Yи Z имеется по 5 наборов, то получаем 25 решений (например, 1-й: 0000 0000 0000, 2-й: 0000 0000 0001 и т.д.)
{X, 0000, Z}
- для X и Z имеется, как уже показано, тоже по 5 наборов решений, но для исключения дублирования набор X=0000 исключаем из рассмотрения, значит, здесь будет 4*5 = 20 решений
{X, Y, 0000}
- рассуждая аналогичным образом (т.е. исключая дубликаты), получаем, что здесь добавляется ещё 4*4=16 решений.
Итого: 25+20+16=61 набор.
0,0(0 оценок)
Популярные вопросы: Информатика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота