Знайти a i b у формулах паралельного перенесення, при якому точка А(2; -3) переходить у точку А 1 (3; -7). В яку точку перейде при цьому паралельному перенесенні точка В(-4; 6) ?
Основанием тетраэдра МАBC служит треугольник АBC в котором AB = BC и АС = 2а√3. Точка О принадлежит АС отрезок МО перпендикулярен АС и ОА = ОС. Расстояние от точки О до прямой МB равно а. Найти угол между плоскостями (AMB) и (CMB).
Проведем ОК⊥МВ. Тогда ОК - расстояние от точки О до прямой МК и ОК = а.
ΔАВС равнобедренный, значит медиана ВО (ОА = ОС по условию) является и высотой,
ВО⊥АС,
МО⊥АС по условию, значит
АС⊥(МОВ).
МВ лежит в плоскости (МОВ), значит МВ⊥АС и ОК⊥МВ по построению, тогда МВ⊥(АКС) и значит ∠АКС - линейный угол двугранного угла между плоскостями (АМВ) и (СМВ).
АО = ОС = АС/2 = а√3, МО - медиана и высота в треугольнике МАС, значит он равнобедренный,
МА = МС.
ΔМАК = ΔМСК по гипотенузе и катету (∠АКМ = ∠СКМ = 90°, МА = МС и МК - общий катет), тогда
АК = КС, значит медиана ОК в равнобедренном треугольнике АКС является и высотой и биссектрисой, т.е. ОК⊥АС и ∠АКС = 2∠ОКС.
Условие задачи неполное. Должно быть так:
Основанием тетраэдра МАBC служит треугольник АBC в котором AB = BC и АС = 2а√3. Точка О принадлежит АС отрезок МО перпендикулярен АС и ОА = ОС. Расстояние от точки О до прямой МB равно а. Найти угол между плоскостями (AMB) и (CMB).
Проведем ОК⊥МВ. Тогда ОК - расстояние от точки О до прямой МК и ОК = а.
ΔАВС равнобедренный, значит медиана ВО (ОА = ОС по условию) является и высотой,
ВО⊥АС,
МО⊥АС по условию, значит
АС⊥(МОВ).
МВ лежит в плоскости (МОВ), значит МВ⊥АС и ОК⊥МВ по построению, тогда МВ⊥(АКС) и значит ∠АКС - линейный угол двугранного угла между плоскостями (АМВ) и (СМВ).
АО = ОС = АС/2 = а√3, МО - медиана и высота в треугольнике МАС, значит он равнобедренный,
МА = МС.
ΔМАК = ΔМСК по гипотенузе и катету (∠АКМ = ∠СКМ = 90°, МА = МС и МК - общий катет), тогда
АК = КС, значит медиана ОК в равнобедренном треугольнике АКС является и высотой и биссектрисой, т.е. ОК⊥АС и ∠АКС = 2∠ОКС.
ΔОКС: ∠КОС = 90°,
tg∠OKC = OC / OK = a√3 / a = √3
Тогда ∠ОКС = 60°.
∠АКС = 2∠ОКС = 120°
Можно найти точки пересечения прямой СД с прямыми АМ и АВ для получения координат точек К и Д.
Пусть треугольник расположен в прямоугольной системе координат точкой С в начале, СВ по оси Ох.
Длину ВС примем равной 2 для удобства, АС = 2/√3.
Угловой коэффициент прямой СД равен √3, прямой АМ равен (-2/√3).
Точка К как пересечение СД и АМ: √3х = (-2/√3)х + (2/√3).
3х = -2х + 2,
5х = 2 х =2/5 = 0,4.
Точка Д как пересечение СД и АВ: √3х = (-1/√3)х + (2/√3).
3х = -1х + 2,
4х = 2 х =2/4 = 0,5.
Наклонные отрезки СК и СД пропорциональны их горизонтальным проекциям (это координаты по оси Ох).
Тогда СК:СД = 4/5.
ответ: СК:КД = 4:1.