По формуле Герона находим площадь основания. р = (16+63+65)/2 = 144/2 = 72 см. So = √(p(p-a)(p-b)(p-c)) = √(72*56*9*7) = √ 254016 = 504 см². Если все боковые рёбра имеют одинаковый угол наклона к основанию, то вершина пирамиды равно удалена от вершин основания. При этом проекции боковых рёбер на основание равны высоте H пирамиды и равны радиусу R описанной около треугольника основания окружности. R = abc/(4S) = 16*63*65/(4*504) = 65520/2016 = 32.5 см. Получаем объём пирамиды: V = (1/3)SoH = (1/3)504*32,5 = 5460 см³.
Найдем сторону квадрата через его периметр. Периметр квадрата равен Р=4а; 6,6=4а; а=1,65 дм. Диагональ квадрата является диаметром описанной окружности, а она в корень из 2 больше его стороны,значит диагональ равна 1,65 корень из 2. Найдем радиус. Радиус в 2 раза меньше диаметра,т.е.1,65sqrt2:2=0,825sqrt2. Обозначим сторону шестиугольника с. Тогда по формуле радиуса описанной окружности возле правильного шестиугольника равна R=с/(2sin180/6); 0,825sqrt2=c/2sin30; 0,825sqrt2=c/2*1/2; c=0,825sqrt2. Теперь найдем периметр шестиугольника,т.к. шестиугольник правильный,то у него все стороны равны,тогда Р=6с; Р=6*0,825sqrt2=4,95sqrt2 дм
р = (16+63+65)/2 = 144/2 = 72 см.
So = √(p(p-a)(p-b)(p-c)) = √(72*56*9*7) = √ 254016 = 504 см².
Если все боковые рёбра имеют одинаковый угол наклона к основанию, то вершина пирамиды равно удалена от вершин основания.
При этом проекции боковых рёбер на основание равны высоте H пирамиды и равны радиусу R описанной около треугольника основания окружности.
R = abc/(4S) = 16*63*65/(4*504) = 65520/2016 = 32.5 см.
Получаем объём пирамиды:
V = (1/3)SoH = (1/3)504*32,5 = 5460 см³.