Я бы просто взяла интеграл, но для понимания нужно проследить некоторые детали. Да, здесь нужно понимать, откуда берется шар. Это вращение какой то функции заданной на плоскости вокруг оси y или x, это неважно, из-за сферической симметрии фигуры. Такая функция - это криволинейная трапеция y=sqrt(R^2 - x^2). Далее остается только проинтегрировать. Я напишу на листке, а то здесь сложно писать длинные формулы. Аналогично для шарового слоя. Единственная разница - пределы интегрирования функции. (Здесь я решила вращать вокруг оси OX)
Если катеты одного прямоугольного треугольника соответственно равны катетам другого,то такие треугольника равны.
Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого,то такие треугольники равны.
Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.
Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого ,то такие треугольники равны.
Аналогично для шарового слоя. Единственная разница - пределы интегрирования функции. (Здесь я решила вращать вокруг оси OX)
Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого,то такие треугольники равны.
Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.
Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого ,то такие треугольники равны.