Знайдіть точки які є образом точок A(3,-1), B(0,4),C(-2,0) при паралельному перенесені на вектор m(3,-4). Образами яких того при такому перенесенні є точки M(-2,1),N(5,0),P(0,-3)?
3)угол DCA =угол CAD, значит треугольник ADC р.б поэтому AD=DC=8
4)S трADB =1/2 * a *h
S трADB=1/2 * AD * DB
SтрADB=1/2 * 8 * 12= 48
номер 6
1)треугольник ABC р.б т.к AB=BC
2)проведем медиану BD, медиана будет является также и высотой и биссектрой, значит AD=DC=4 и треугольники ABD и BDC прямоугольные (углы ADB и CDB равны 90°)
Найти: СН.
Т.к ∠С = 90°, то (треугольник)АВС - прямоугольный. АВ - гипотенуза, АС и ВС - катеты, СН - высота.
За свойством прямоугольного треугольника (сторона напротив угла 30 градусов):
ВС = 1/2 AB = 36 Sqrt3/2 = 18 Sqrt3 (см).
За теоремой о высоте, проведённой из вершины прямого угла:
ВН = ВС^2/AB = (18 Sqrt3)^2/36 Sqrt3 = 324 * 3 : 36 Sqrt3 = 9 * 3 : Sqrt3 = 27/Sqrt3 (см).
За теоремой Пифагора:
ВС^2 = BH^2 + CH^2.
Отсюда:
СН^2 = BC^2 - BH^2 = (18 Sqrt3)^2 - (27/Sqrt3)^2 = (324 * 3) - (729/3) = 972 - 243 = 729 (см).
СН = Sqrt729 = 27 см
ответ: СН = 27 см
номер 3
1)угол ACD+ угол ACB =180 т.к они смежные, значит
угол ACD = 180- угол ACB = 180° -135° =45°
2)Рассмотрим треугольник ACD
по теореме о сумме углов треугольника:
угол ADC+угол DCA + угол CAD=180°, значит
угол CAD=180-угол ADC-угол DCA=180°-90°-45°=45°
3)угол DCA =угол CAD, значит треугольник ADC р.б поэтому AD=DC=8
4)S трADB =1/2 * a *h
S трADB=1/2 * AD * DB
SтрADB=1/2 * 8 * 12= 48
номер 6
1)треугольник ABC р.б т.к AB=BC
2)проведем медиану BD, медиана будет является также и высотой и биссектрой, значит AD=DC=4 и треугольники ABD и BDC прямоугольные (углы ADB и CDB равны 90°)
3)Рассмотрим треугольник ABD ,
по теореме Пифагора:
AD^2+BD^2=AB^2;
4^2+BD^2=10^2
16+BD^2=100
BD^2=84
BD=2√21
S трABC =1/2 * a *h
S трABC=1/2 * AC * DB
SтрABC =1/2 * 8 * 2√21= 8√21