Это как бы достаточно классическая задача. А такая пирамида называется тетраэдр. Правильная пирамида. Очень правильная.
Назови вершины банальными буквами ABCD. Далее надо заметить, что отрезок, являющийся расстоянием между двумя противоположными рёбрами (длину которого мы ищем, назовём его банальной букой х), лежит в плоскости, содержащей одно из рёбер, и точку середины противоположного ребра. Точнее даже, этот самый отрезок является высотой равнобедренного треугольника, образованного одним из рёбер, и высотами двух соседних граней. Чему равна высота в равностороннем треугольнике со стороной а? Стандартная формула: а * корень(3) / 2. Итак, что мы имеем: необходимо найти высоту равнобедренного треугольника, в основании которого лежит ребро а, а обе боковые стороны равны, как только что нашли, а * корень(3) / 2. Теорема Пифагора нам тут имеем: х = корень ( (а*корень(3)/2 ) в квадрате - (1/2а) в квадрате); х = а * корень ( 2) / 2.
Древнеегипетская астрономия уходит в глубокую старину: египтяне были одними из первых, кто вёл наблюдения звёздного неба; авторы МЭСБЕ ставят их астрономию в один ряд с китайской[en], индийской и вавилонской (халдеи)[1]. В Египте и общавшихся с ним странах установился довольно точный определения времени года посредством гелиакического восхода звезды Сириус, — летосчисление глубокой древности. Служа для определения времени года, восход или заход определённой звёзды мог служить также и для оценки часа ночи[2]. Египтяне первыми определили год в 365 дней и 6 часов[3].
Для египтян разлив священной реки Нил — земного отражения небесного Млечного Пути[4] — всегда совпадал с восходом Сириуса[5]. Появление Сириуса повторяется через правильные промежутки времени, а именно через каждые 365 1/4 дней[6]. Каждые четыре года Сириус восходил днём позже, из-за чего через 365 х 4 = 1460 лет разница между гражданским календарём (360 дней + пять дней-эпагоменов) и солнечным годом достигала целого года[5], который и прибавлялся к 1460 годам, образуя цикл из 1461 солнечного года[6]. Весь 1461-й год сириусного цикла (сотического[en] — по греческому именованию звезды) считался одним днём Сириуса и превращался в годовой праздник египетского народа[7]. Также каждый восход Сириуса сопровождался известными празднествами, хотя и не приходился на день гражданского Нового года. В древнеегипетских надписях сохранились данные о восходе Сириуса.[5]
Библейское Пятикнижие, переданное египетским жрецом Моисеем (ок. XV века до н. э.), включает космогонические знания. Греческая античная астрономия (VI век до н. э. — V век н. э.) стала плодом учёных мужей, обучавшихся у египетских жрецов (Фалес, Пифагор, Демокрит, Аристарх, Евдокс и др.)[3]
Назови вершины банальными буквами ABCD.
Далее надо заметить, что отрезок, являющийся расстоянием между двумя противоположными рёбрами (длину которого мы ищем, назовём его банальной букой х), лежит в плоскости, содержащей одно из рёбер, и точку середины противоположного ребра. Точнее даже, этот самый отрезок является высотой равнобедренного треугольника, образованного одним из рёбер, и высотами двух соседних граней.
Чему равна высота в равностороннем треугольнике со стороной а? Стандартная формула: а * корень(3) / 2.
Итак, что мы имеем: необходимо найти высоту равнобедренного треугольника, в основании которого лежит ребро а, а обе боковые стороны равны, как только что нашли, а * корень(3) / 2.
Теорема Пифагора нам тут имеем:
х = корень ( (а*корень(3)/2 ) в квадрате - (1/2а) в квадрате);
х = а * корень ( 2) / 2.
Такой получается ответ.
Древнеегипетская астрономия уходит в глубокую старину: египтяне были одними из первых, кто вёл наблюдения звёздного неба; авторы МЭСБЕ ставят их астрономию в один ряд с китайской[en], индийской и вавилонской (халдеи)[1]. В Египте и общавшихся с ним странах установился довольно точный определения времени года посредством гелиакического восхода звезды Сириус, — летосчисление глубокой древности. Служа для определения времени года, восход или заход определённой звёзды мог служить также и для оценки часа ночи[2]. Египтяне первыми определили год в 365 дней и 6 часов[3].
Для египтян разлив священной реки Нил — земного отражения небесного Млечного Пути[4] — всегда совпадал с восходом Сириуса[5]. Появление Сириуса повторяется через правильные промежутки времени, а именно через каждые 365 1/4 дней[6]. Каждые четыре года Сириус восходил днём позже, из-за чего через 365 х 4 = 1460 лет разница между гражданским календарём (360 дней + пять дней-эпагоменов) и солнечным годом достигала целого года[5], который и прибавлялся к 1460 годам, образуя цикл из 1461 солнечного года[6]. Весь 1461-й год сириусного цикла (сотического[en] — по греческому именованию звезды) считался одним днём Сириуса и превращался в годовой праздник египетского народа[7]. Также каждый восход Сириуса сопровождался известными празднествами, хотя и не приходился на день гражданского Нового года. В древнеегипетских надписях сохранились данные о восходе Сириуса.[5]
Библейское Пятикнижие, переданное египетским жрецом Моисеем (ок. XV века до н. э.), включает космогонические знания. Греческая античная астрономия (VI век до н. э. — V век н. э.) стала плодом учёных мужей, обучавшихся у египетских жрецов (Фалес, Пифагор, Демокрит, Аристарх, Евдокс и др.)[3]