Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 26²= Х² +(Х-14)², где Х - половина большей диагонали. Из этого уравнения находим
Х = 7±√(49+240) = 17см.
Тогда половина меньшей диагонали равна 17-14 = 3см и площадь одного треугольника равна (1/2)*17*3 = 25,5см². Таких треугольников в ромбе четыре.
Указать, какие из перечисленных утверждений верны.
1.
2) Медиана проходит через середину стороны треугольника.
3) Медиана прямоугольного треугольника, проведенная к гипотенузе, равна ее половине.
5) Медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2 к 1, считая от вершины.
2.
1) Высота всегда образует с прямой, содержащей одну из сторон треугольника, равные углы.
2) В прямоугольном треугольнике высота может совпадать с одной из его сторон.
5) Высота может лежать и вне треугольника.
3.
2) Биссектриса всегда делит пополам один из углов треугольника.
3) Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам.
4) Точка пересечения биссектрис произвольного треугольника - центр окружности, вписанной в этот треугольник.
4.
1) Биссектриса всегда делит пополам один из углов треугольника.
3) Точка пересечения биссектрис всегда лежит внутри треугольника.
4) Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам.
ответ
ответ дан
ivanproh1
S = 102 см²
Объяснение:
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 26²= Х² +(Х-14)², где Х - половина большей диагонали. Из этого уравнения находим
Х = 7±√(49+240) = 17см.
Тогда половина меньшей диагонали равна 17-14 = 3см и площадь одного треугольника равна (1/2)*17*3 = 25,5см². Таких треугольников в ромбе четыре.
Площадь ромба равна 4*25,5 = 102см².
Можно через диагонали:
S=(1/2)*D*d = (1/2)*34*6 = 102 см².