Дано: АВСD - ромб, S = 96 см², BD = 4x, AC = 3x, Знайти: Pabcd. Решение: Нехай коефіцієнт пропорційності буде х, тоді діаголналі АС і BD дорівнюють відповідно 3х см і 4х см. Площа ромба - 96 см²
Коефіцієнт пропорційності 4см, а діаголі тоді будуть - 4х=4*4=16 см і 3х=3*4= 12см.
Діагоналі АС і BD перетинаються в точці О. Діагоналі ромба рівні, звідси: АО=ОС = АС/2=12/2 = 6см, ВО = OD = BD/2 =16/2 = 8см. С прямокутного трикутника АОВ: АО = 6 см, ВО = 8см. За т. Піфагора:
DC=1/2 AC , тк катет , лежащий против острого угла в 30 град. равен половине гипотенузы . Следовательно DC= 12/2=6 см . Я провела высоту из угла D . Высота делит угол пополам . Рассмотрим треугольник ADW. Угол DAW=30градусов ; угол DWA=90градусов ; а угол WDA =180-(90+30)=60 , значит угол WDC тоже 60, в сумме 120 . Рассмотрим треугольник ADC . Чтобы узнать угол С , надо 180-(120+30)=30градусов . AD=1/2AC , потому что катет , лежащий против угла в 30 градусов равен половине гипотенузы , значит равен 6 см
Знайти: Pabcd.
Решение:
Нехай коефіцієнт пропорційності буде х, тоді діаголналі АС і BD дорівнюють відповідно 3х см і 4х см. Площа ромба - 96 см²
Коефіцієнт пропорційності 4см, а діаголі тоді будуть - 4х=4*4=16 см і 3х=3*4= 12см.
Діагоналі АС і BD перетинаються в точці О. Діагоналі ромба рівні, звідси: АО=ОС = АС/2=12/2 = 6см, ВО = OD = BD/2 =16/2 = 8см.
С прямокутного трикутника АОВ:
АО = 6 см, ВО = 8см.
За т. Піфагора:
Периметр ромба дорівнює добутку 4 сторін
Відповідь: 40 см.