В треугольнике ABC угол C равен 90°, AB = АС•√2, BC = 6. Найдите высоту CН. По т.Пифагора АВ²=АС²+ВС² АВ²-АС²=ВС² Примем АС=а. Тогда гипотенуза АВ=а√2. 2а²-а²=36⇒ а=√36=6 a√2=6√2 АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой. В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла). СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
По т.Пифагора АВ²=АС²+ВС²
АВ²-АС²=ВС²
Примем АС=а. Тогда гипотенуза АВ=а√2.
2а²-а²=36⇒
а=√36=6
a√2=6√2
АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой.
В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла).
СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
1.∠МОН + ∠ МОР = развёрнутый угол НОР и равен 180°
∠ МОР = 180 - 64 = 116°
Δ МОР - равнобедренный ( по свойству диагоналей прямоугольника)
Углы при основании равнобедренного треугольника равны.
3
Дано:
прямоугольник АВСД,
АС и ВД — диагонали прямоугольника АВСД,
точка О — точка пересечения диагоналей АС и ВД,
угол АОВ = 65 градусов.
Найти градусную меру угла ВОА — ?
Рассмотрим прямоугольник АВСД. Его диагонали равны между собой и точкой пересечения делятся пополам.
Рассмотрим равнобедренный треугольник АВО. Угол АОВ = углу ВОА, так как это один и тот же угол. Следовательно угол АОВ = углу ВОА = 65 градусов.
ответ: 65 градусов.