Если продлить AO до пересечения с окружностью в тоске C1, то угол AC1B = угол ACB - это вписанные углы, опирающиеся на дугу AB. Поскольку AC1 - диаметр, то угол ABC1 - прямой. Поэтому у углов ABD и AC1B стороны попарно перпендикулярны, то есть эти углы равны. (Можно и так сказать. Треугольник AC1B - прямоугольный, а BD - высота в этом прямоугольном треугольнике, поэтому образует с катетом угол, равный острому углу треугольника AC1B. Высота в прямоугольном треугольнике делит его на два треугольника, ему же подобных, то есть - с такими же углами). Получилось, что угол ABD = угол AC1B = угол ACB. Треугольники ACB и ADB имеют общий угол CAB (он же - угол DAB), и пару равных углов (угол ABD = угол ACB) , то есть эти треугольники подобны. Поэтому DA/AB = AB/AC; DA = AB^2/AC = 28^2/56 = 14; CD = AC - DA = 42;
То, что угол ABD = угол ACB, можно показать еще одним если продлить BD до пересечения с окружностью в точке B1, то треугольник ABB1 будет равнобедренный. Действительно, AO перпендикулярен BB1, а точка O равноудалена от B и B1, поэтому все точки прямой AO равноудалены от концов отрезка BB1. Поэтому угол AB1B будет равным углу ABB1 (он же - угол ABD). Но угол AB1B опирается на ту же дугу, что и угол ACB.
Длина хорды окружности равна 72, а расстояние от центра окружности до этой хорды равно 27. Найти диаметр окружности.
----------
Пусть хорда будет АВ.
Расстояние от точки до прямой - длина перпендикуляра, проведенного к ней.
Проведем через О диаметр МК, перпендикулярный хорде. Он разделит ее пополам ( свойство) в точке Н.
АН=ВН=72:2=36.
Задачу можно решить двумя
По т.Пифагора из ∆ ОНВ
ОВ=√(BH²+OH²)= √2025=45
Длина диаметра равна двум радиусам и равна 90 (ед. длины)
Диаметр - тоже хорда.
По свойству пересекающихся хорд произведение отрезков одной равно произведению отрезков другой. ⇒
МН•HK=AH•HB
MH=r-27
KH=r+27
(r-27)•(r+27)=36•36
По формуле сокращенного умножения
r²-27²=36²
r=√2025=45
d=2r=90 (ед. длины)
угол AC1B = угол ACB - это вписанные углы, опирающиеся на дугу AB.
Поскольку AC1 - диаметр, то угол ABC1 - прямой. Поэтому у углов ABD и AC1B стороны попарно перпендикулярны, то есть эти углы равны.
(Можно и так сказать. Треугольник AC1B - прямоугольный, а BD - высота в этом прямоугольном треугольнике, поэтому образует с катетом угол, равный острому углу треугольника AC1B. Высота в прямоугольном треугольнике делит его на два треугольника, ему же подобных, то есть - с такими же углами).
Получилось, что угол ABD = угол AC1B = угол ACB.
Треугольники ACB и ADB имеют общий угол CAB (он же - угол DAB), и пару равных углов (угол ABD = угол ACB) , то есть эти треугольники подобны.
Поэтому DA/AB = AB/AC; DA = AB^2/AC = 28^2/56 = 14; CD = AC - DA = 42;
То, что угол ABD = угол ACB, можно показать еще одним если продлить BD до пересечения с окружностью в точке B1, то треугольник ABB1 будет равнобедренный. Действительно, AO перпендикулярен BB1, а точка O равноудалена от B и B1, поэтому все точки прямой AO равноудалены от концов отрезка BB1. Поэтому угол AB1B будет равным углу ABB1 (он же - угол ABD). Но угол AB1B опирается на ту же дугу, что и угол ACB.