если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой. Доказательство: пусть а 1 и а 2 - две параллельные прямые и a - плоскость, перпендикулярная прямой а 1 .
lib.com.ru/Exact Science/ma_a1.htm
Свойство перпендикулярной прямой и плоскости
Пусть a1 и a2 – две параллельные прямые и α - плоскость, перпендикулярная прямой a1. Докажем, что эта плоскость перпендикулярна и прямой a2. Проведем через точку A2 пересечения прямой a2 с плоскостью α произвольную прямую...
Так наверное
Объяснение:
если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой. Доказательство: пусть а 1 и а 2 - две параллельные прямые и a - плоскость, перпендикулярная прямой а 1 .
lib.com.ru/Exact Science/ma_a1.htm
Свойство перпендикулярной прямой и плоскости
Пусть a1 и a2 – две параллельные прямые и α - плоскость, перпендикулярная прямой a1. Докажем, что эта плоскость перпендикулярна и прямой a2. Проведем через точку A2 пересечения прямой a2 с плоскостью α произвольную прямую...
Дано: Треугольник АВС. АВ=ВСб М∈BD, K∈AC. MK║AB. <ABC=126°,<BAC=27°.
Найти <MKD, <KMD и <MDK.
Решение.
Треугольник АВС равнобедренный, следовательно BD - биссектриса, высота и медиана треугольника. <BAC=<BCA=27°, Значит
<ABD = (1/2)*(<ABC) = 126/2 = 63°. <BDA=<MDK = 90°.
MK параллельна АВ, значит <MKD=<BAC=27°, а <KMD=<ABD=63°, как соответственные углы при параллельных прямых АВ и МК и секущих AD и BD соответственно.
ответ: <MKD=27°, <KMD=63°, <MDK=90°.