а) 6 см, 17 см, 18 см - существует, т.к. сумма двух сторон больше третьей стороны;
б) 70 см, 30 см, 50 см - существует, т.к. сумма двух сторон больше третьей стороны;
2.
Если основание 3 см, то боковые стороны по 6 см; если основание 6 см, то такой треугольник существовать не может, т.к. сумма боковых сторон не может быть равна основанию.
3.
Если углы при основании по 40°, то угол при вершине
180-(40+40)=100°; если угол при вершине 40°, то углы при основании по (180-40):2=70°.
4.
Если внешний угол при основании 110°, то смежный с ним внутренний угол 180-110=70°, т.к. сумма смежных углов 180°.
Объяснение:
Высота, проведённая из прямого угла делит треугольник на два прямоугольных треугольника, у которых равные углы.
Угол между медианой и высотой, проведённых из вершины прямого угла равен разнице острых углов треугольника.
Угол между биссектрисой и высотой, проведённых с вершины прямого угла равен половине разницы острых углов треугольника.
Квадрат высоты, проведённой к гипотенузе, равен произведению проекций катетов на гипотенузу.
Если высота, проведённая на гипотенузу, делит её на отрезки, разница которых равна одному из катетов треугольника, то острые углы относятся как 1:2.
Высота, которая опущена из прямого угла треугольника, равна произведению катетов, поделённому на гипотенузу.
1.
а) 6 см, 17 см, 18 см - существует, т.к. сумма двух сторон больше третьей стороны;
б) 70 см, 30 см, 50 см - существует, т.к. сумма двух сторон больше третьей стороны;
2.
Если основание 3 см, то боковые стороны по 6 см; если основание 6 см, то такой треугольник существовать не может, т.к. сумма боковых сторон не может быть равна основанию.
3.
Если углы при основании по 40°, то угол при вершине
180-(40+40)=100°; если угол при вершине 40°, то углы при основании по (180-40):2=70°.
4.
Если внешний угол при основании 110°, то смежный с ним внутренний угол 180-110=70°, т.к. сумма смежных углов 180°.
Сумма углов при основании 70+70=140°.
Угол при вершине 180-140=40°.