Задача: вершина С равностороннего треугольника АВС со стороной 8 см удалена от плоскости на расстояние 2 см. Вычислить угол между плоскостями треугольника АВС и , если сторона АВ лежит в плоскости.
Треугольник АВС, АВ=ВС, АК-биссектриса, ВК=25, КС=30, ВК/КС=АВ/АС, ВН-высота=медиане=биссектрисе, точка О пересечение АК и ВН, АН=НС=1/2АС, АС=2*АН=2АН, ВК/КС=АВ/2АН, 25/30=АВ/2АН, АВ=2АН*25/30=10АН/6, треугольникАВН, АО биссектриса, ВО/ОН=АВ/АН, ВО/ОН=(10АН/6)/АН=10/6=5/3, ВО/ОН=5/3=5х/3х, ВН=ВО+ОН=5х+3х=8х, АВ=10АН/6=ВК+КС=25+30=55, 10АН/6=55, АН=55*6/10=33, АС=33*2=66, треугольник АВН прямоугольный, ВН=корень(АВ в квадрате-АН в квадрате)=корень(3025-1089)=44, 8х=44, х=5,5, ВО=5*5,5=27,5, ОН=3*5,5=16,5, cosВ=(АВ в квадрате+ВС в квадрате-АС в квадрате)/(2*АВ*ВС)=корень(3025+3025-4356)/(2*55*55)=1694/6050=0,28, что соответствует углу около 74, уголА=уголС=53 град (меньше 60) (углы привлизительно)
7.
Что-то требование я не нахожу, так что найду все углы.
∠BOC = 137° => <COD = 180-137 = 43°
CO == CD => <COD == <CDO = 43° => <OCD = 180-(43+43) = 94°
<COD вертикален с углом <AOB => <AOB == <COD = 43°
AO == AB => <OAB & <ABO = (180-43)/2 = 68.5°.
ответ: <COD = 43°, <OCD = 94°, <AOB == <COD = 43°, <ABO == <OAB = 68.5°.
5.
<BCD = 180-120 => <BCA = 60°
AB == BC => <BAC == <BCA = 60°
<B = 180-(60+60) = 60°.
6. AB == BC => <C == <A = 50°
<B = 180-(50+50) = 80°
Предполагаю, AD — это бисектриса.
<DAC = 50/2 = 25°
<ADC = 180-(50+25) = 105°.