Медиана прямоугольного тр-ка равна половине гипотенузы С=90; AC - вертикальный катет; BC - горизонтальный CO=13 - медиана; AB=26 Тр-ки COB и COA - равнобедренные Из точки O опустим перпендикуляры ON и OM на катеты AC и BC соответственно. ON и OM являются и медианами AC+BC=60-26=34 Пусть AC=x⇒BC=34-x CO^2=CM^2+MO^2 CM=1/2*BC=(34-x)/2 MO=CN=1/2*AC=x/2⇒ (34-x)^2/4+x^2/4=169⇒1156-68x+x^2+x^2=676⇒ 2x^2-68x+480=0⇒x^2-34x+240=0⇒ По теореме Виетта x1+x2=34; x1*x2=240⇒ x1=24; x2=10 34-24=10 34-10=24 Один катет - 10, другой - 24
У задачи решения. если АВ перпендикулярна плоскости) В этом случае необходимо найти АМ: АМ:МВ = 2:3, АВ = АМ + МВ=> 2х + 3х = 12,5 5х = 12,5 х = 2,5 АМ = 2х = 2 * 2,5 = 5 (м) если АВ является наклонной к плоскости)Необходимо найти расстояние от точки М до плоскости (длину отрезка МD).Потребуются дополнительные построения: точка С, лежащая в плоскости; ВС - перпендикуляр к плоскости; АС - проекция наклонной АВ.Треугольники АВС и АDМ подобны по первому признаку.=> AM/AB = MD/BC, АВ = АМ + ВМMD = (12,5 * 2) / 5 = 5 (м)
С=90; AC - вертикальный катет; BC - горизонтальный
CO=13 - медиана; AB=26
Тр-ки COB и COA - равнобедренные
Из точки O опустим перпендикуляры ON и OM на катеты AC и BC соответственно. ON и OM являются и медианами
AC+BC=60-26=34
Пусть AC=x⇒BC=34-x
CO^2=CM^2+MO^2
CM=1/2*BC=(34-x)/2
MO=CN=1/2*AC=x/2⇒
(34-x)^2/4+x^2/4=169⇒1156-68x+x^2+x^2=676⇒
2x^2-68x+480=0⇒x^2-34x+240=0⇒
По теореме Виетта
x1+x2=34; x1*x2=240⇒
x1=24; x2=10
34-24=10
34-10=24
Один катет - 10, другой - 24
если АВ перпендикулярна плоскости)
В этом случае необходимо найти АМ:
АМ:МВ = 2:3, АВ = АМ + МВ=> 2х + 3х = 12,5
5х = 12,5
х = 2,5
АМ = 2х = 2 * 2,5 = 5 (м)
если АВ является наклонной к плоскости)Необходимо найти расстояние от точки М до плоскости (длину отрезка МD).Потребуются дополнительные построения: точка С, лежащая в плоскости; ВС - перпендикуляр к плоскости; АС - проекция наклонной АВ.Треугольники АВС и АDМ подобны по первому признаку.=> AM/AB = MD/BC, АВ = АМ + ВМMD = (12,5 * 2) / 5 = 5 (м)