В тетраэдре DABC точка M делит пополам ребро AD. Известно, что в этом тетраэдре BA=BD;CA=CD. На рисунке . Докажи, что прямая, на которой находится ребро AD, перпендикулярна плоскости (BCM).
Объяснение:
1. В тетраэдре все боковые ребра , проведенные из вершины тетраэдра , равны. По условию BA=BD;CA=CD ,значит ΔADB –равносторонний, ΔDAC –равносторонний.
2. По свойству медианы равнобедренного треугольника , она является высотой, значит ВМ⊥ АD и СМ ⊥AD .
Поэтому угол , который образует медиана с основаниями этих треугольников равен 90°
3. Согласно признаку перпендикулярности прямой и плоскости , если прямая перпендикулярна к двум пересекающимся прямым МС и МВ , лежащим в плоскости ВСМ, то она перпендикулярна к этой плоскости (ВСМ).
Виносимо 24 за дужки, і перемножуємо праву і ліву частину рівняння за правилом пропорції. У нас виходить квадратне рівняння. Вирішуємо його, і отримуємо два Vпароплава. Одне негативне - ця відповідь не підходить. А друге 29.6 км/год.
В тетраэдре DABC точка M делит пополам ребро AD. Известно, что в этом тетраэдре BA=BD;CA=CD. На рисунке . Докажи, что прямая, на которой находится ребро AD, перпендикулярна плоскости (BCM).
Объяснение:
1. В тетраэдре все боковые ребра , проведенные из вершины тетраэдра , равны. По условию BA=BD;CA=CD ,значит ΔADB –равносторонний, ΔDAC –равносторонний.
2. По свойству медианы равнобедренного треугольника , она является высотой, значит ВМ⊥ АD и СМ ⊥AD .
Поэтому угол , который образует медиана с основаниями этих треугольников равен 90°
3. Согласно признаку перпендикулярности прямой и плоскости , если прямая перпендикулярна к двум пересекающимся прямым МС и МВ , лежащим в плоскости ВСМ, то она перпендикулярна к этой плоскости (ВСМ).
29,6 км/год
Объяснение:
Час шляху дорівнюватиме часу вниз за течією + час вгору за течією. Тобто: 24 / (Vпароплава + 4) + 24 / (Vпароплава - 4) = 2,5 год.
Приводимо до спільного знаменника і отримуємо:
(24(Vпароплава + 4) + 24(Vпароплава - 4)) / (Vпароплава + 4)(Vпароплава - 4) = 2,5
Виносимо 24 за дужки, і перемножуємо праву і ліву частину рівняння за правилом пропорції. У нас виходить квадратне рівняння. Вирішуємо його, і отримуємо два Vпароплава. Одне негативне - ця відповідь не підходить. А друге 29.6 км/год.
Вот и ответ.