Вертикальные углы-это пары углов с общей вершиной,образованные при пересечении двух прямых так,что стороны одного угла являются продолжением сторон другого угла
По той же причине углы СОА и DOB равны между собой
Поэтому можно утверждать,что треугольники АОС и DOB равны между собой по второму признаку равенства треугольников-если сторона и два прилежащих к ней угла одного треугольника равны стороне и двум прилежащим к ней углам другого треугольника,то такие треугольники равны между собой
Ну а если треугол Ники равны между собой то и углы А и В тоже равны между собой
Так как A внутри BCD, AB=AD, то BAD - тоже равнобедренный треугольник, и у него общее с BCD основание BD. Поставим точку K так, что BK=KD, тогда KC - медиана BCD, KA - медиана BAD. Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC. Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.
ответ:Надо доказать,что треугольники СОА и DOB равны между собой
СО=ОD по условию задачи
Угол 1 равен углу 2,тоже по условию
Угол 1 равен внутреннему углу D,a угол 2 равен внутреннему углу С,как вертикальные.
Вертикальные углы-это пары углов с общей вершиной,образованные при пересечении двух прямых так,что стороны одного угла являются продолжением сторон другого угла
По той же причине углы СОА и DOB равны между собой
Поэтому можно утверждать,что треугольники АОС и DOB равны между собой по второму признаку равенства треугольников-если сторона и два прилежащих к ней угла одного треугольника равны стороне и двум прилежащим к ней углам другого треугольника,то такие треугольники равны между собой
Ну а если треугол Ники равны между собой то и углы А и В тоже равны между собой
Объяснение:
Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC.
Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.