Так как каждое ребро пирамиды равно корень из 3, то эта пирамида является правильной так как она состоит из 4 правильных треугольников. Нам как раз и надо найти площадь любого из них, но ведь площадь полной поверхности это будет 4 площади любого из правильных треугольников данной пирамиды. Площадь правильного треугольника (формула) S=(а^2*корень из 3)/4, где а - сторона правильного треугольника. Получаем:4*("корень из 3"^2*корень из 3)/4 = 3*"корень из 3" (четверки сокращаются, а корень из 3 в квадрате равен 3 (для длин сторон)) ответ: 3*"корень из 3"
Из правильного треугольника АВС: из теоремы Пифагора: высота ВК равна 3 корня из 2. Угол ОАК - это угол между плоскостью АОС и основанием. Поскольку угол ОАК = 30 градусов, то катет ОК равен гипотенузы ОА как катет, который лежит против угла 30 градусов. ОК = ОА/2. Пускай ОК = х, тогда ОА = 2х. Из прямоугольного треугольника ОАК: за теоремой Пифагора: OA^2 = OK^2 + AK^2, 4x^2 = 9 - x^2, 3x^2 = 9, x^2 = 3, x = корень из 3. OK = корень из 3. Объем призмы равен площади основания умножить на высоту: S = So*H = S(ABC)*OK = BK*AC/2*OK = 9 корней из 6.
ответ: 3*"корень из 3"