Нарисуйте на плоскости: 1)Четырёхугольная пирамида, Две смежные грани которой Перпендикулярны основанию 2) Четырёхугольная пирамида, Вершина которой проецируется в середину одной из сторон оснований
перейде точка À точка C. 2) на кут 120° протигодинникової стрілки. перейде точка E точкаB. 1088. Дано відрізок і точку O, яка ал. 214. йому не належить.
Äî § 21 ГЕОМЕТРІ ЕРЕТВОРЕ 1087. –правильний шестикутник (мал. 214). У якуточку при повороті навколо точки O: 1) на кут60° за годинниковою стрілкою перейде точкаÀ точка C 2) на кут 120° проти годинниковоїстрілки перейде точка E точка B 1088. Дано відрізок і точку O, яка ал. 214 йому не належить. Побудуйте відрізок A′B′, у якийперейде відрізок при повороті навколо точкиO: 1) на 90° проти годинникової стрілки 2) на 20° за годинник
Определение: "Правильная пирамида — это пирамида, основанием которой является правильный многоугольник, а вершина пирамиды проецируется в центр этого многоугольника. Высота боковой грани, проведенная из вершины правильной пирамиды, называется апофемой, боковые ребра равны, боковые грани равны (все являются равнобедренными треугольниками)". Следовательно, углы наклона боковых ребер к основанию равны - это углы между ребром и высотой основания (правильного треугольника). Углы углы наклона боковых граней равны - это углы между апофемой и высотой основания. Высота правильного треугольника по формуле равна h=(√3/2)*a. Эта высота является и медианой, значит она делится точкой О (центром основания) в отношении 2:1, считая от вершины. ОС=(2/3)*h=(√3/3)*a. OH=(1/3)*h=(√3/6)*a. Тогда значение угла наклона боковых ребер к основанию найдем из прямоугольного треугольника AOS: tgα=OS/OC = 2a/(√3*a/3)=2√3 ≈3,46. α=arctg(3,46). α ≈73,9° Значение угла наклона боковых граней к основанию найдем из прямоугольного треугольника НOS: tgβ=OS/OH = 2a/(√3*a/6)=4√3 ≈6,93. β=arctg(6,93). β ≈81,8°.
перейде точка À точка C. 2) на кут 120° протигодинникової стрілки. перейде точка E точкаB. 1088. Дано відрізок і точку O, яка ал. 214. йому не належить.
Äî § 21 ГЕОМЕТРІ ЕРЕТВОРЕ 1087. –правильний шестикутник (мал. 214). У якуточку при повороті навколо точки O: 1) на кут60° за годинниковою стрілкою перейде точкаÀ точка C 2) на кут 120° проти годинниковоїстрілки перейде точка E точка B 1088. Дано відрізок і точку O, яка ал. 214 йому не належить. Побудуйте відрізок A′B′, у якийперейде відрізок при повороті навколо точкиO: 1) на 90° проти годинникової стрілки 2) на 20° за годинник
которой является правильный многоугольник, а вершина пирамиды
проецируется в центр этого многоугольника. Высота боковой грани,
проведенная из вершины правильной пирамиды,
называется апофемой, боковые ребра равны, боковые грани равны
(все являются равнобедренными треугольниками)".
Следовательно, углы наклона боковых ребер к основанию равны -
это углы между ребром и высотой основания (правильного треугольника).
Углы углы наклона боковых граней равны - это углы между апофемой
и высотой основания.
Высота правильного треугольника по формуле равна h=(√3/2)*a.
Эта высота является и медианой, значит она делится точкой О
(центром основания) в отношении 2:1, считая от вершины.
ОС=(2/3)*h=(√3/3)*a.
OH=(1/3)*h=(√3/6)*a.
Тогда значение угла наклона боковых ребер к основанию найдем из прямоугольного треугольника AOS:
tgα=OS/OC = 2a/(√3*a/3)=2√3 ≈3,46.
α=arctg(3,46). α ≈73,9°
Значение угла наклона боковых граней к основанию найдем из прямоугольного треугольника НOS:
tgβ=OS/OH = 2a/(√3*a/6)=4√3 ≈6,93.
β=arctg(6,93). β ≈81,8°.