Каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к этому отрезку.
Расстояние от точки до прямой на плоскости — это кратчайшее расстояние от точки до прямой и равно длине отрезка, который соединяет точку с прямой и перпендикулярен прямой.
Отсюда можно сделать вывод, что ГМТ будут две симметричные точки, лежащие на серединном перпендикуляре на расстоянии 2см от АВ каждая.
Окружности заключены между параллельными, следовательно их диаметры равны расстоянию между параллельными.
Окружности лежат внутри параллелограмма, следовательно заключены между большими сторонами.
Центры равноудалены от больших сторон => линия центров параллельна большим сторонам параллелограмма.
Данный параллелограмм можно разделить на два ромба.
В ромб можно вписать окружность.
Окружности касаются => внутренняя касательная перпендикулярна линии центров, а значит и большим сторонам параллелограмма.
Ромб с перпендикулярными сторонами - квадрат.
Искомая площадь равна двум квадратам со стороной x.
По теореме Пифагора x=4/√5
S =2*16/5 =6,4
Объяснение:
Каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к этому отрезку.
Расстояние от точки до прямой на плоскости — это кратчайшее расстояние от точки до прямой и равно длине отрезка, который соединяет точку с прямой и перпендикулярен прямой.
Отсюда можно сделать вывод, что ГМТ будут две симметричные точки, лежащие на серединном перпендикуляре на расстоянии 2см от АВ каждая.
В прикрепленном файле это точки С и С₁