1) Докажите, что точки А1, B1, C1 и D1 лежат в плоскости, параллельной плоскости квадрата АBCD.
Рассмотрим треугольники, у которых общая вершина О, а основания - стороны квадрата АВСД. А1В1, В1С1, С1Д1 и Д1А1 как средние линии этих треугольников параллельны основаниям а поэтому параллельны квадрату АВСД.
2) Найдите периметр четырехугольника A1B1C1D1.
Четырехугольник A1B1C1D1 имеет стороны, равные половинам сторон квадрата АВСД и поэтому его периметр равен половине квадрата АВСД и равен (4*10)/2 = 20 см.
Определение: "Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек или другими словами это две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными".
Пусть прямая bc лежит в плоскости α. Опустим перпендикуляры из точек a и d на плоскость α. Основания этих перпендикуляров - проекции точек а и d на плоскости α - a' и d' соответственно. Соединив концы скрещивающихся прямых, получим прямые ab и cd, являющиеся гипотенузами прямоугольных треугольников aa'b и dd'c. Совместим катеты aa' и dd'. Тогда гипотенузы ab и cd или пересекутся (при условии равенства катетов aa' и dd'), или будут скрещивающимися. Следовательно, прямые ab и cd не могут быть параллельными.
Рассмотрим треугольники, у которых общая вершина О, а основания - стороны квадрата АВСД.
А1В1, В1С1, С1Д1 и Д1А1 как средние линии этих треугольников параллельны основаниям а поэтому параллельны квадрату АВСД.
2) Найдите периметр четырехугольника A1B1C1D1.
Четырехугольник A1B1C1D1 имеет стороны, равные половинам сторон квадрата АВСД и поэтому его периметр равен половине квадрата АВСД и равен (4*10)/2 = 20 см.
Прямые ab и cd не являются параллельными.
Объяснение:
Определение: "Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек или другими словами это две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными".
Пусть прямая bc лежит в плоскости α. Опустим перпендикуляры из точек a и d на плоскость α. Основания этих перпендикуляров - проекции точек а и d на плоскости α - a' и d' соответственно. Соединив концы скрещивающихся прямых, получим прямые ab и cd, являющиеся гипотенузами прямоугольных треугольников aa'b и dd'c. Совместим катеты aa' и dd'. Тогда гипотенузы ab и cd или пересекутся (при условии равенства катетов aa' и dd'), или будут скрещивающимися. Следовательно, прямые ab и cd не могут быть параллельными.