Втреугольнике abc высота aa2 проходит внутри треугольника. на ней отметили точку x. пусть лучи bx и cx пересекают стороны
треугольника в точках b2 и c2 соответственно, то есть b2 ∈ ac и c2 ∈ ab.
докажите, что луч a2a приходится углу b2a2c2 биссектрисой.
Поскольку радиус вписанной в отсеченный треугольник окружности в √2 раз меньше радиуса окружности, вписанной в исходный треугольник, то и стороны его будут в √2 раз меньше. То есть гипотенузу с эта касательная делит на отрезки a/√2 и c - a/√2;
Если продлить эту касательную и катет b до их пересечения, то получится еще один прямоугольный треугольник с радиусом вписанной окружности, таким же, как у отсеченного, то есть равный ему.
b/√2 = c - a/√2; или √2 = a/c + b/c = sin(α) + cos(α);
решить это тригонометрическое уравнение проще простого (возведением в квадрат), но на самом деле решение сразу видно α = 45°;
Это решение было сразу очевидно, но я доказал, что других решений у задачи нет.