Проведем диагональ. Диагональ является общей стороной для отмеченных треугольников, а их углы при этой общей стороне соответственно равны друг другу так как накрестлежащие при параллельных прямых, следовательно эти треугольники равны. Из равенства треугольников следует равенство соответственых сторон, одни из которых наши параллельные стороны ЧТД
Задача решается через векторы.
Построим вектор ;
Середина D отрезка AB может быть найдена откладыванием половины вектора от точки A
;
Итак D( -9+4, 10-3 ) = D( -5, 7 ) ;
От точки D нужно отложить вектор высоты в обе возможные стороны
Вектор высоты перпендикулярен вектору основания , а значит его проекции накрест-пропорциональны с противоположным знаком:
(I) , что непосредственно следует из скалярного произведения, поскольку для перпендикулярных векторов должно выполняться: (II) ;
Таким образом вектор пропорционален вектору , поскольку для вектора выполняется и равенство (I) и равенство (II) осталось лишь найти масштаб вектора ;
Вектор имеет длину ;
Аналогично, AB = 10
При этом, поскольу треугольник равносторонний, то значит его высота составляет , т.к ;
Значит , а стало быть ;
В итоге .
Откладываем этот вектор в разные стороны (+\-) от точки D( -5, 7 ) и получаем:
ОТВЕТ:
/// примечание: ;
/// примечание: .
Параллелограмм - четырехугольник, стороны которого попарно параллельны.
Смежные углы параллелограмма являются односторонними при параллельных прямых, значит их сумма равна 180°
альфа + бета = 180°
бета + гамма = 180°
альфа + бета = бета + гамма {бета сокращается}
альфа = гамма
ЧТД
Проведем диагональ. Диагональ является общей стороной для отмеченных треугольников, а их углы при этой общей стороне соответственно равны друг другу так как накрестлежащие при параллельных прямых, следовательно эти треугольники равны. Из равенства треугольников следует равенство соответственых сторон, одни из которых наши параллельные стороны
ЧТД