Втреугольнике abc, площадь которого равна ѕ, точка m середина стороны вс, точка n на продолжении стороны ab и точка k на продолжении стороны ac выбраны так, что аn =1/2ab ck=1/2ас. найти площадь треугольника mnk.
Раз периметр ромба равен 16 см, то каждая его сторона равна 16:4=4 см. Точкой пересечения диагоналей получаем прямоугольный треугольник, в котором гипотенузой является сторона ромба, равная 4 см, а также катет, равный половине данной длины нашей диагонали, т.е. один из катетов равен 3√4:2=6:2=3. По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7. Тут по таблице Брадиса я только примерно могу назвать градусную меру углов. Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов. Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус. Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам. Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360. ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.
По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7.
Тут по таблице Брадиса я только примерно могу назвать градусную меру углов.
Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов.
Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус.
Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам.
Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360.
ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.
Обозначают так: точка отсчета, начало луча, к примеру А, вторая буква - это ближе к концу графического изображения луча, к примеру В. Луч АВ.
2.Углом называется часть плоскости ограниченная двумя лучами.
Сами лучи называются сторонами угла, а общая точка, из которой лучи выходят, называются вершиной угла.
3.Градусная мера, которого 180 градусов.
1) 0, 1, бесконечность
2) прямая, исходящая из одной точки, обозначение - маленькие буквы греческого алфавита
3) два луча, выходящих из одной точки
4) имеющие равные стороны и углы
5) по линейке (или другим подобным при
6) делящая отрезок на 2 равные части
7) транспортиром (или другим подобным при
8) луч, делящий угол на две равные части
линейка, циркуль, рулетка
9) Градус обозначается °. Один оборот равен 360°. В прямом угле, таким образом, 90°, в развёрнутом — 180°.
1 градус = 0,017453293 радиан
Объяснение: